Communications: The electronic spectrum of Li(NH3)4.

J Chem Phys

Department of Chemistry, University of Leicester, University Road, Leiceste, LE1 7RH, United Kingdom.

Published: April 2010

Li(NH(3))(4) has been proposed as a key entity in lithium-ammonia solutions, but its spectral signature has so far proved impossible to distinguish from other species in these solutions. Here we report the first electronic spectrum of Li(NH(3))(4) in the gas phase, which was recorded using mass-selective depletion spectroscopy. Strong absorption is observed in the near-infrared and the band system is assigned to the A (2)T(2)-X (2)A(1) transition in a nominally tetrahedral complex. However, the vibrational structure is indicative of a substantial Jahn-Teller effect in the excited electronic state. The broad and structured spectrum confirms a recent theoretical prediction that the electronic spectrum of Li(NH(3))(4) will strongly overlap with the spectrum of the solvated electron in lithium-ammonia solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3396023DOI Listing

Publication Analysis

Top Keywords

electronic spectrum
12
spectrum linh34
12
lithium-ammonia solutions
8
spectrum
5
communications electronic
4
linh34
4
linh34 linh34
4
linh34 proposed
4
proposed key
4
key entity
4

Similar Publications

Experiencing music often entails the perception of a periodic beat. Despite being a widespread phenomenon across cultures, the nature and neural underpinnings of beat perception remain largely unknown. In the last decade, there has been a growing interest in developing methods to probe these processes, particularly to measure the extent to which beat-related information is contained in behavioral and neural responses.

View Article and Find Full Text PDF

Research Progress in Small-Molecule Detection Using Aptamer-Based SERS Techniques.

Biosensors (Basel)

January 2025

College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.

Nucleic acid aptamers are single-stranded oligonucleotides that are selected through exponential enrichment (SELEX) technology from synthetic DNA/RNA libraries. These aptamers can specifically recognize and bind to target molecules, serving as specific recognition elements. Surface-enhanced Raman scattering (SERS) spectroscopy is an ultra-sensitive, non-destructive analytical technique that can rapidly acquire the "fingerprint information" of the measured molecules.

View Article and Find Full Text PDF

Emotion recognition is an advanced technology for understanding human behavior and psychological states, with extensive applications for mental health monitoring, human-computer interaction, and affective computing. Based on electroencephalography (EEG), the biomedical signals naturally generated by the brain, this work proposes a resource-efficient multi-entropy fusion method for classifying emotional states. First, Discrete Wavelet Transform (DWT) is applied to extract five brain rhythms, i.

View Article and Find Full Text PDF

Quadratic Forms in Random Matrices with Applications in Spectrum Sensing.

Entropy (Basel)

January 2025

Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129 Turin, Italy.

Quadratic forms with random kernel matrices are ubiquitous in applications of multivariate statistics, ranging from signal processing to time series analysis, biomedical systems design, wireless communications performance analysis, and other fields. Their statistical characterization is crucial to both design guideline formulation and efficient computation of performance indices. To this end, random matrix theory can be successfully exploited.

View Article and Find Full Text PDF

Structural and luminescent properties of a Cr/Sm doped GdAlO orthorhombic perovskite for solid-state lighting applications.

RSC Adv

January 2025

Departamento de Física Aplicada, Facultade de Óptica e Optometríae Instituto de Materiais (iMATUS) Campus Vida, Universidade de Santiago de Compostela (USC) 15782 Galicia Spain.

The Cr and Sm doped GdAlO perovskite with formula GdSmAlCrO, was synthesized a solid-state reaction method, and its structure, morphology, and photoluminescence properties were thoroughly investigated. The compound crystallizes in the orthorhombic space group, with Cr transition-metal ions substituting Al in the octahedral symmetry site, and Sm lanthanide (rare-earth) ions occupying the tetrahedral site. The material's morphology and chemical composition homogeneity were evaluated through Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!