Many techniques are described to treat Chiari type I malformation. One of them is a splitting of the dura, removing its outer layer only to reduce the risks of cerebrospinal fluid (CSF) leak. We try to show the effectiveness of this technique from histological and biomechanical observations of dura mater. Study was performed on 25 posterior fossa dura mater specimens from fresh human cadavers. Dural composition and architecture was assessed on 47 transversal and sagittal sections. Uniaxial mechanical tests were performed on 22 dural samples (15 entire, 7 split) to focus on the dural macroscopic mechanical behavior comparing entire and split samples and also to understand deformation mechanisms. We finally created a model of volume expansion after splitting. Dura mater was composed of predominant collagen fibers with a few elastin fibers, cranio-caudally orientated. The classical description of two distinct layers remained inconstant. Biomechanical tests showed a significant difference between entire dura, which presents an elastic fragile behavior, with a small domain where deformation is reversible with stress, and split dura, which presents an elasto-plastic behavior with a large domain of permanent strain and a lower stress level. From these experimental results, the model showed a volume increase of approximately 50% below the split area. We demonstrated the capability of the split dura mater to enlarge for suitable stress conditions and we quantified it by biomechanical tests and experimental model. Thus, dural splitting decompression seems to have a real biomechanical substrate to envision the efficacy of this Chiari type I malformation surgical technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10143-010-0261-x | DOI Listing |
J Neurosurg Case Lessons
January 2025
Department of Orthopedic Surgery, Iwate Medical University, Shiwa-gun, Iwate Prefecture, Japan.
Background: Septic arthritis of the lumbar facet joint (SALFJ) is a rare condition that can lead to serious complications. The authors present an uncommon case in which SALFJ resulted in bacterial meningitis (BM) with hydrocephalus and pyogenic ventriculitis, causing a disturbance of consciousness. Reports describing perforation of the dura mater by an epidural abscess are rare, and the present case offers valuable insights into the management of complex and severe complications arising from SALFJ.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
KG Jebsen Centre for Brain Fluid Research, University of Oslo, Oslo, Norway.
A potential two-way passage of cells and substances between the brain and skull bone marrow may open for new insights into neurological disease. The arachnoid membrane was traditionally considered to restrict cells and larger molecules in CSF from entering the dura and bone marrow directly. However, new data on exchange between brain and skull bone marrow have recently emerged.
View Article and Find Full Text PDFRadiol Case Rep
March 2025
Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
Calcified chronic subdural hematoma (CCSDH) is a rare condition characterized by the accumulation of calcified blood between the dura mater and arachnoid membrane, typically following remote trauma. These lesions often present as space-occupying, extra-axial masses over the cerebral convexity and can mimic extra-axial tumors, such as calcified meningiomas. A 73-year-old male with a history of prostate cancer, hypertension, and hyperlipidemia presented with vision changes and mild papilledema.
View Article and Find Full Text PDFCurr Neurovasc Res
January 2025
Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
Objective: Regenerative therapy using stem cells to treat cerebral infarction is currently in the research phase. However, this method is costly. It also faces other significant challenges, including optimization of timing, delivery methods, and dosage.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, USA.
The purpose of the current study was to determine the angulation of the dural venous sinuses in soft tissue, to evaluate differences between types of tissue, and to discuss the potential influence of these angulations on intracranial venous hemodynamics and related pathologies. Angulations formed in different segments of the transverse, sigmoid, and superior sagittal sinuses were measured in 13 adult human cadaveric heads (26 sides). After the soft tissues were removed, measurements were also taken from the underlying bone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!