The frequency of squamous cell skin carcinoma in organ transplant patients is around 100-fold higher than normal. This dramatic example of therapy-related cancer reflects exposure to sunlight and to immunosuppressive drugs. Here, we show that the interaction between low doses of UVA, the major ultraviolet component of incident sunlight, and 6-TG, a UVA chromophore that is introduced into DNA by one of the most widely prescribed immunosuppressive drugs, causes DNA single- and double-strand breaks (DSB). S phase cells are particularly vulnerable to this DNA breakage and cells defective in rejoining of S-phase DSB are hypersensitive to the combination of low-dose UVA and DNA 6-TG. 6-TG/UVA-induced DNA lesions provoke canonical DNA damage responses involving activation of the ATM/Chk2 and ATR/Chk1 pathways and appropriate cell cycle checkpoints. Higher levels of photochemical DNA damage induce a proteasome-mediated degradation of Chk1 and checkpoint abrogation that is consistent with persistent unrepaired DNA damage. These findings indicate that the interaction between UVA and an immunosuppressant drug causes photochemical DNA lesions, including DNA breaks, and can compromise cell cycle checkpoints. These two properties could contribute to the high risk of sunlight-related skin cancer in long-term immunosuppressed patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901207 | PMC |
http://dx.doi.org/10.1038/onc.2010.140 | DOI Listing |
New Phytol
January 2025
State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
In plants, sperm cell formation involves two rounds of pollen mitoses, in which the microspore initiates the first pollen mitosis (PMI) to produce a vegetative cell and a generative cell, then the generative cell continues the second mitosis (PMII) to produce two sperm cells. DUO1, a R2R3 Myb transcription factor, is activated in the generative cell to promote S-G2/M transition during PMII. Loss-of-function of DUO1 caused a complete arrest of PMII.
View Article and Find Full Text PDFIndian J Clin Biochem
January 2025
Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
Unlabelled: Breast cancer is the most common malignancy in the women. Chemotherapy is a crucial part of breast cancer treatment especially for advanced and metastatic forms of the disease. However, chemotherapy has limitations due to tumor heterogeneity, chemoresistance, and side effects.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
Cancer is a major global concern. Despite considerable advancements in cancer therapy and control, there are still large gaps and requirements for development. In recent years, various naturally occurring anticancer drugs have been derived from natural resources, such as alkaloids, glycosides, terpenes, terpenoids, flavones, and polyphenols.
View Article and Find Full Text PDFiScience
January 2025
Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada.
During infection, dengue virus (DENV) and Zika virus (ZIKV), two (ortho)flaviviruses of public health concern worldwide, induce alterations of mitochondria morphology to favor viral replication, suggesting a viral co-opting of mitochondria functions. Here, we performed an extensive transmission electron microscopy-based quantitative analysis to demonstrate that both DENV and ZIKV alter endoplasmic reticulum-mitochondria contact sites (ERMC). This correlated at the molecular level with an impairment of ERMC tethering protein complexes located at the surface of both organelles.
View Article and Find Full Text PDFiScience
January 2025
Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Cancer-associated fibroblasts (CAFs) represent a major contributor to tumor growth. Cellular senescence is a state of cell-cycle arrest characterized by a pro-inflammatory phenotype. The potential impact of CAF senescence on tumor progression and the tumor microenvironment (TME) remains to be elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!