Biomechanics of vertebral bone augmentation.

Neuroimaging Clin N Am

University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA.

Published: May 2010

Percutaneous vertebral augmentation is a successful means of relieving pain and reducing disability after vertebral compression fracture; however, the exact mechanism by which vertebral augmentation eliminates pain remains unproven. Most likely, pain relief is because of stabilization of microfractures. The biomechanical effects of vertebral fracture and subsequent vertebral augmentation therapy, however, are topics for continued investigation. Altered biomechanical stresses after treatment may affect the risk of adjacent fracture in an osteoporotic patient; that risk may be different after vertebral augmentation with cavity creation (balloon assisted vertebroplasty or kyphoplasty) when compared with vertebral augmentation without cavity creation (vertebroplasty). Polymethyl methacrylate cement used in these procedures may have an important effect on the load transfer and disk mechanics, and therefore, the variables of cement volume, formulation, and distribution should also be evaluated. Finally, the question of whether prophylactic treatment of adjacent intact levels is indicated must be considered.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nic.2010.02.002DOI Listing

Publication Analysis

Top Keywords

vertebral augmentation
20
augmentation cavity
8
cavity creation
8
vertebral
7
augmentation
6
biomechanics vertebral
4
vertebral bone
4
bone augmentation
4
augmentation percutaneous
4
percutaneous vertebral
4

Similar Publications

Ossification of the ligamentum flavum (OLF) can lead to dural ossification, significantly increasing the risk of complications, including intraoperative nerve injury. The application of augmented reality (AR) and advanced digital technologies in spine surgery has the potential to reduce these risks. This case report highlights a perioperative nerve injury-free microsurgery using elastic image fusion technology, which integrates preoperative imaging with intraoperative computed tomography for a patient with severe stenotic OLF and dural ossification.

View Article and Find Full Text PDF

Osteoporotic vertebral fractures (OVFs) in elderly patients pose challenges due to bone destruction and surgical risks. This case report describes a minimally invasive approach using calcium phosphate cement (CPC) vertebroplasty and short fusion with cement augmentation of pedicle screws (CAPS) in a 91-year-old woman with severe OVF. The patient underwent CPC vertebroplasty at L1 and CAPS fixation at T12-L2, followed by osteoporosis medication.

View Article and Find Full Text PDF

While nanozymes are commonly employed in nanocatalytic therapy (NCT), the efficacy of NCT is hampered by the limited catalytic activity of nanozymes and the intricate tumor microenvironment (TME). In this work, we design a high-efficiency nanozyme with NIR-II photothermal property for the mild hyperthermia-augmented NCT. In order to endow a single-component nanomaterial the ability to simultaneously catalyze and exhibit NIR-II photothermal properties, a straightforward template method is utilized to fabricate sulfur vacancies (V)-doped CoS nanocages.

View Article and Find Full Text PDF

Background: This meta-analysis was conducted to compare the efficacy and safety of vertebral augmentation (VA) plus pedicle screw fixation (PSF) with VA for treating osteoporotic thoracolumbar fractures (OTLFs).

Methods: A comprehensive search was conducted in PubMed, Embase, Cochrane Library and China National Knowledge Infrastructure (CNKI) to identify studies comparing PSF+VA with VA for treating OTLF. The primary outcomes were operation time, blood loss, length of stay, visual analogue scale (VAS) score, Oswestry disability index (ODI), Cobb angle, anterior vertebral height (AVH), bone cement leakage, secondary fracture and other adverse events.

View Article and Find Full Text PDF

Backgrounds: Previous studies have found that percutaneous vertebroplasty (PVP) can effectively improve the local pain of the affected vertebra caused by thoracolumbar osteoporotic vertebral compression fracture (OVCF) regardless of unilateral or bilateral puncture, but there are few reports on whether it is equally effective for the accompanying distant lumbosacral pain.

Objective: To analyze the clinical effect of unilateral or bilateral PVP on thoracolumbar OVCF with distant lumbosacral pain.

Methods: The clinical data of patients with single-stage OVCF treated with PVP in our hospital from March 2019 to March 2023 were retrospectively analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!