The heat shock response (HSR) is a highly evolutionarily conserved defence mechanism allowing the cell to promptly react to elevated temperature conditions and other forms of stress. It has been subject to intense research for at least two main reasons. First, it is considered a promising candidate for deciphering the engineering principles underlying regulatory networks. Second, heat shock proteins (main actors of the HSR) play crucial role in many fundamental cellular processes. Therefore, profound understanding of the heat shock response would have far-reaching ramifications for the cell biology. Recently, a new deterministic model of the eukaryotic heat shock response has been proposed in the literature. It is very attractive since it consists of only the minimum number of components required by any functional regulatory network, while yet being capable of biological validation. However, it admits small molecule populations of some of the considered metabolites. In this paper a stochastic model corresponding to the deterministic one is constructed and the outcomes of these two models are confronted. The aim with this comparison is to show that, in the case of the heat shock response, the approximation of a discrete system with a continuous model is a reasonable approach. This is not always the truth, especially when the numbers of molecules of the considered species are small. By making the effort of performing and analysing 1000 stochastic simulations, we investigate the range of behaviour the stochastic model is likely to exhibit. We demonstrate that the obtained results agree well with the dynamics displayed by the continuous model, which strengthens the trust in the deterministic description. A proof of the existence and uniqueness of the stationary distribution of the Markov chain underlying the stochastic model is given. Moreover, the obtained view of the stochastic dynamics and the performed comparison to the outcome of the continuous formulation provide more insight into the dynamics of the heat shock response mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2010.04.029 | DOI Listing |
Front Cell Dev Biol
January 2025
Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States.
Heat Shock Factor 1 (HSF1) is a major transcriptional factor regulating the heat shock response and has become a potential target for overcoming cancer chemoresistance. This review comprehensively examines HSF1's role in chemoresistance and its potential as a therapeutic target in cancer. We explore the complex, intricate mechanism that regulates the activation of HSF1, HSF1's function in promoting resistance to chemotherapy, and the strategies used to manipulate HSF1 for therapeutic benefit.
View Article and Find Full Text PDFOncol Lett
March 2025
Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
The prognostic value of negative regulators of ferroptosis in patients with colorectal cancer (CRC) has not yet been fully elucidated. The present study performed a systematic identification and selection of candidate negative regulators of ferroptosis using The Cancer Genome Atlas data cohort (n=367), followed by clinical validation through immunohistochemistry of samples from patients with CRC (n=166) and further evaluation. analysis identified specific light-chain subunit of the cystine/glutamate antiporter, AIFM2, NFE2L2, FTH1, GLS2, glutathione peroxidase 4 (GPX4) and heat shock protein β-1 (HSPB1) genes as possible candidates.
View Article and Find Full Text PDFInt J Physiol Pathophysiol Pharmacol
December 2024
Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University Motihari Motihari, Bihar 845401, India.
Objective: The Heat Shock Protein 70 (HSP70) family is a highly conserved group of molecular chaperones essential for maintaining cellular homeostasis. These proteins are necessary for protein folding, assembly, and degradation and involve cell recovery from stress conditions. HSP70 proteins are upregulated in response to heat shock, oxidative stress, and pathogenic infections.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Artemia & Aquaculture Research Institute, Urmia University, Urmia, Iran.
Objectives: Nonalcoholic fatty liver disease (NAFLD) is known to disrupt testicular anti-oxidant capacity, leading to oxidative stress (OS) that can negatively affect male fertility by damaging sperm DNA. Heat shock proteins (HSP70 and HSP90), in association with transitional proteins (TP1 and TP2), play crucial roles in protecting sperm DNA integrity in oxidative conditions. Whiteleg shrimp protein hydrolysates (HPs) exhibit anti-oxidant properties, prompting this study to explore the potential of HPs in ameliorating NAFLD-induced testicular damage.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Background: This study aimed to investigate the association between serum heat shock protein 27 (HSP27) levels and 28-day mortality in patients with sepsis.
Methods: This retrospective study analyzed the clinical data of 76 septic patients admitted to the intensive care unit (ICU). Fifty non-septic ICU patients and 50 healthy individuals served as control groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!