An enzyme was purified from the pyloric caecum of tambaqui (Colossoma macropomum) through heat treatment, ammonium sulfate fractionation, Sephadex G-75 and p-aminobenzamidine-agarose affinity chromatography. The enzyme had a molecular mass of 23.9 kDa, NH(2)-terminal amino acid sequence of IVGGYECKAHSQPHVSLNI and substrate specificity for arginine at P1, efficiently hydrolizing substrates with leucine and lysine at P2 and serine and arginine at P1'. Using the substrate z-FR-MCA, the enzyme exhibited greatest activity at pH 9.0 and 50 degrees C, whereas, with BAPNA activity was higher in a pH range of 7.5-11.5 and at 70 degrees C. Moreover, the enzyme maintained ca. 60% of its activity after incubated for 3h at 60 degrees C. The enzymatic activity significantly decreased in the presence of TLCK, benzamidine (trypsin inhibitors) and PMSF (serine protease inhibitor). This source of trypsin may be an attractive alternative for the detergent and food industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2010.04.155 | DOI Listing |
Biochemistry
January 2025
Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.
1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) is a unique thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the formation of DXP, a branchpoint metabolite required for the biosynthesis of vitamins and isoprenoids in bacterial pathogens. DXPS has relaxed substrate specificity and utilizes a gated mechanism, equipping DXPS to sense and respond to diverse substrates. We speculate that pathogens utilize this distinct gated mechanism in different ways to support metabolic adaptation during infection.
View Article and Find Full Text PDFUnlabelled: The reflexive translation of symbols in one chemical language to another defined genetics. Yet, the co-linearity of codons and amino acids is so commonplace an idea that few even ask how it arose. Readout is done by two distinct sets of proteins, called aminoacyl-tRNA synthetases (AARS).
View Article and Find Full Text PDFApplications of genetic code expansion in live cells are widespread and continually emerging, yet they have been limited by their reliance on the supplementation of non-standard amino acids (nsAAs) to cell culturing media. While advances in cell-free biocatalysis are improving nsAA synthesis cost and sustainability, such processes remain reliant on multi-step processes of product isolation followed by supplementation to engineered cells. Here, we report the design of a modular and genetically encoded system that combines the steps of biosynthesis of diverse phenylalanine derivatives, which are the most frequently used family of nsAAs for genetic code expansion, and their site-specific incorporation within target proteins using a single engineered bacterial host.
View Article and Find Full Text PDFBioresour Technol
January 2025
Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China. Electronic address:
Composting organic waste is a sustainable recycling method in agricultural systems, yet the microbial preferences for different substrates and their influence on composting efficiency remain underexplored. Here, 210 datasets of published 16S ribosomal DNA amplicon sequences from straw and manure composts worldwide were analyzed, and a database of 278 bacterial isolates was compiled. Substrate-driven microbiome variations were most prominent during the initial composting stages.
View Article and Find Full Text PDFEnviron Pollut
January 2025
MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh-160036, India. Electronic address:
The oxygenases are essential in the bioremediation of xenobiotic pollutants. To overcome cultivability constraints, this study aims to identify new potential extradiol dioxygenases using the functional metagenomics approach. RW1-4CC, a novel catechol 2,3-dioxygenase, was isolated using functional metagenomics approach, expressed in a heterologous system, and characterized thoroughly using state-of-the-art techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!