15-Deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is an endogenous peroxisome proliferator-activated receptor gamma (PPARgamma) agonist that suppresses progressive matrix deposition; however, little is known about the effects of 15d-PGJ(2) on human peritoneal mesothelial cells (HPMCs). We investigated the following: (i) the expression of PPARgamma; (ii) the effect of 15d-PGJ(2) on angiotensin II (Ang II)-induced fibronectin (FN) expression and secretion; (iii) the effect of 15d-PGJ(2) (with or without Ang II and with or without the specific PPARgamma antagonist GW9662) and pioglitazone, a synthetic PPARgamma agonist, on hepatocyte growth factor (HGF) expression and secretion; (iv) the effect of HGF on Ang II-induced FN expression and secretion; (v) the expression of c-Met (a specific HGF receptor) and its phospho-signal; and (vi) the involvement of HGF in the effect produced by 15d-PGJ(2) using selective c-Met inhibitor PHA-665752. The presence of PPARgamma was detected by western blot analysis. 15d-PGJ(2) inhibited Ang II-induced FN expression and increased HGF expression, even in the presence of Ang II. This effect of HGF expression was completely prevented by co-treatment with GW9662. Additionally, upregulation of HGF secretion induced by 15d-PGJ(2) and HGF production induced by pioglitazone was revealed. We demonstrated the presence of c-Met, and presented evidence that HGF inhibits Ang II-induced FN expression and activates phosphorylation of c-Met, which is blocked by PHA-665752; 15d-PGJ(2) also activated c-Met phosphorylation. Furthermore, PHA-665752 attenuates the inhibitory effects of 15d-PGJ(2) on FN secretion. These findings suggest that 15d-PGJ(2) has a novel and potent antifibrotic effect in HPMC and this action is likely mediated by HGF.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1744-9987.2009.00702.xDOI Listing

Publication Analysis

Top Keywords

ang ii-induced
16
expression secretion
12
hgf expression
12
ii-induced expression
12
expression
10
15d-pgj2
10
hgf
10
ii-induced fibronectin
8
fibronectin expression
8
hepatocyte growth
8

Similar Publications

20-HETE mediates Ang II-induced cardiac hypertrophy via ROS and Ca signaling in H9c2 cells.

Sci Rep

January 2025

Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.

In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.

View Article and Find Full Text PDF

Background: Prostaglandin E (PGE) in the rostral ventrolateral medulla (RVLM) has been recognized as a pivotal pressor substance in hypertension, yet understanding of its effects and origins in the RVLM remains largely elusive. This study aimed to elucidate the pivotal enzymes and molecular mechanisms underlying PGE synthesis induced by central Ang II (angiotensin II) and its implications in the heightened oxidative stress and sympathetic outflow in hypertension.

Methods And Results: RVLM microinjections of PGE and Tempol were administered in Wistar-Kyoto rats.

View Article and Find Full Text PDF

Treatment with an inhibitor of glucose use via glucose transporters (GLUT) has been shown to attenuate experimental abdominal aortic aneurysm (AAA) development in mice. Vascular smooth muscle cell (VSMC) signaling seems to be essential for angiotensin II (Ang II)-induced AAA in mice. Accordingly, we have tested a hypothesis that VSMC silencing of the major GLUT, GLUT1, prevents AAA development and rupture in mice treated with Ang II plus β-aminopropionitrile.

View Article and Find Full Text PDF

Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease (CVD) that is partly attributable to endothelial dysfunction, inflammatory response, and angiogenesis. G protein-coupled receptor 4 (GPR4), a proton-sensitive G protein-coupled receptor that is abundantly expressed in vascular endothelial cells, has been associated with numerous physiological functions. Nevertheless, its potential involvement in the development of AAA remains unexplored.

View Article and Find Full Text PDF

Intravenous injection of PCSK9 gain-of-function mutation in C57BL/6J background mice on Angiotensin II-induced AAA.

Biochim Biophys Acta Mol Basis Dis

January 2025

State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China. Electronic address:

Objective: This study was performed to compare the incidence of Angiotensin II (Ang II)-induced abdominal aortic aneurysms (AAA) between intravenous and intraperitoneal injection of AAV8.mPCSK9 in wild-type (WT) mice with C57BL/6J background and the pathological differences of above model in WT and ApoE mice.

Design: Male WT mice were injected intraperitoneally or intravenously with either a AAV8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!