Background: A wide variety of professional radio frequency (RF) aesthetic treatments for anti-aging are available aiming at skin tightening. A new home-use RF device for facial treatments has recently been developed based on TriPollar technology.
Objective: To evaluate the mechanism of the new home-use device, in the process of collagen remodeling, using an ex vivo skin model.
Methods: Human skin samples were collected in order to evaluate the anti-aging effect of a home-use device for facial treatments on an ex vivo human skin model. Skin tightening was evaluated by dermal histology, quantitative analysis of collagen fibers and dosage of collagen synthesis.
Results: Significant collagen remodeling following RF treatment with the device was found in the superficial and mid-deep dermis. Biochemical measurement of newly synthesized collagen showed an increase of 41% in the treated samples as compared to UV-aged control samples.
Conclusions: The new home-use device has been demonstrated to affect significant collagen remodeling, in terms of the structural and biochemical improvement of dermal collagen on treated skin samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/09546630903277628 | DOI Listing |
J Neural Eng
January 2025
CEA-Leti, 17 avenue des martyrs, Grenoble, Auvergne-Rhône-Alpes, 38054, FRANCE.
Objective. Assistive robots can be developed to restore or provide more autonomy for individuals with motor impairments. In particular, power wheelchairs can compensate lower-limb impairments, while robotic manipulators can compensate upper-limbs impairments.
View Article and Find Full Text PDFACS Omega
January 2025
Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, Ravila 14a, 50411Tartu, Estonia.
Water is an essential part of everyday life, and similarly, numerous industries depend on it. Regular water analysis is needed for both home use and in more specific fields, e.g.
View Article and Find Full Text PDFAnal Biochem
January 2025
Jianhu Clinical Medical College of Yangzhou University, Jianhu, Jiangsu, 224700, China. Electronic address:
In this study, we emphasize the importance of identifying Let-7a, a microRNA that is key in diagnosing and predicting lung cancer outcomes. Let-7a's function as a biomarker is essential, as it affects tumor suppression and controls cell differentiation and growth. We developed a novel device, an electrochemical biosensor based on Duplex Specific Nuclease (DSN), that is designed for the accurate detection of Let-7a.
View Article and Find Full Text PDFWearable Technol
December 2024
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
This work studies upper-limb impairment resulting from stroke or traumatic brain injury and presents a simple technological solution for a subset of patients: a soft, active stretching aid for at-home use. To better understand the issues associated with existing associated rehabilitation devices, customer discovery conversations were conducted with 153 people in the healthcare ecosystem (60 patients, 30 caregivers, and 63 medical providers). These patients fell into two populations: spastic (stiff, clenched hands) and flaccid (limp hands).
View Article and Find Full Text PDFOphthalmol Sci
November 2024
Notal Vision Inc., Manassas, Virginia.
Purpose: To validate the performance of the Notal OCT Analyzer (NOA) in processing self-administered OCT images from an OCT system designed for home use (home OCT [HOCT]) as part of a pivotal study aimed at achieving de novo United States Food and Drug Admininstration marketing authorization.
Design: A prospective quantitative cross-sectional artificial intelligence study.
Participants: The study enrolled adults aged ≥55 years diagnosed with neovascular age-related macular degeneration (nAMD) in ≥1 eligible eye with a best-corrected visual acuity of 20/320 or better.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!