The simple experience of a coherent percept while looking and touching an object conceals an intriguing issue: different senses encode and compare information in different modality-specific reference frames. We addressed this problem in a cross-modal visuo-haptic mental rotation task. Two objects in various orientations were presented at the same spatial location, one visually and one haptically. Participants had to identify the objects as same or different. The relative angle between viewing direction and hand orientation was manipulated (Aligned versus Orthogonal). In an additional condition (Delay), a temporal delay was introduced between haptic and visual explorations while the viewing direction and the hand orientation were orthogonal to each other. Whereas the phase shift of the response time function was close to 0 degrees in the Aligned condition, we observed a consistent phase shift in the hand's direction in the Orthogonal condition. A phase shift, although reduced, was also found in the Delay condition. Counterintuitively, these results mean that seen and touched objects do not need to be physically aligned for optimal performance to occur. The present results suggest that the information about an object is acquired in separate visual and hand-centered reference frames, which directly influence each other and which combine in a time-dependent manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875473 | PMC |
http://dx.doi.org/10.1007/s00221-010-2262-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!