Microbial community on healthy and diseased leaves of an invasive plant Eupatorium adenophorum in Southwest China.

J Microbiol

Laboratory of Conservation and Utilization for Bio-resources, Yunnan University, Kunming, 650091, PR China.

Published: April 2010

Invasive plants have caused great economic losses and environmental problems worldwide. Eupatorium adenophorum is one of the most invasive weeds in China. To better understand its invasive mechanisms, in the present paper, the microbial communities of healthy and diseased leaves of E. adenophorum were obtained using both culture-independent and -dependent methods and their diversities were compared. The bacteria obtained from culture-independent method belong to Proteobacteria (95.8%), Actinobacteria (2.1%), and Firmicutes (2.1%) and fungi belong to Ascomycota (65.2%) and Basidiomycota (34.8%). Very few overlapped microbial species were found by culture-dependent and -independent methods. Healthy leaves display higher bacterial diversity than diseased leaves. Phylogenetic structures are very different between healthy and diseased phyllosphere microbial communities. Bacteria close to Acinetobacter and Pseudomonas were dominant on healthy leaves, whereas those close to Shigella were dominant on diseased leaves. 52.9% of fungal clones from healthy leaves were Ustilaginomycetes, close to Rhodotorula phylloplana and uncultured basidomycete; by contrast, 60% of clones from diseased leaves were Lecanoromycetes, close to Umbilicaria muehlenbergii. No bacteria but four fungal strains phylogenetically close to Myrothecium sp. and Alternaria alternate were pathogenic to seedlings and detached leaves of the invasive plant. Therefore, this plant may be resistant to pathogens from bacteria but not fungi in its introduced range.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12275-010-9185-yDOI Listing

Publication Analysis

Top Keywords

diseased leaves
20
healthy diseased
12
healthy leaves
12
leaves
9
leaves invasive
8
invasive plant
8
eupatorium adenophorum
8
microbial communities
8
healthy
6
diseased
6

Similar Publications

Juice and decoction of leaves of Suaeda fruticosa, a halophytic medicinal plant of Cholistan desert, is traditionally used to treat rheumatism. The current study was carried out to probe into in vivo anti-nociceptive, anti-inflammatory, and anti-arthritic potential of ethanolic extract of the whole plant of S. fruticosa (Et-SF) and its bioactive molecules.

View Article and Find Full Text PDF

<i>Ormocarpum trichocarpum</i> (Taub.) Engl. is a shrub or small tree harvested from the wild as a source of food, traditional medicines and wood.

View Article and Find Full Text PDF

Potato late blight leaf detection in complex environments.

Sci Rep

December 2024

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650504, China.

Potato late blight is a common disease affecting crops worldwide. To help detect this disease in complex environments, an improved YOLOv5 algorithm is proposed. First, ShuffleNetV2 is used as the backbone network to reduce the number of parameters and computational load, making the model more lightweight.

View Article and Find Full Text PDF

Discovery, Characterization, and Application of Broad-Spectrum Antimicrobial Peptide AtR905 from as a Biocontrol Agent.

J Agric Food Chem

December 2024

Key Laboratory of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.

This study investigates a novel antimicrobial peptide AtR905 derived from the endophytic fungus , which was successfully expressed in , purified, and characterized, and highlighted as a promising potential biocontrol agent against various plant pathogens. The results indicated AtR905 exhibited broad-spectrum antimicrobial activities against key pathogens such as and with very low minimal inhibitory concentrations (MICs). Stability tests confirmed that AtR905 retains its antimicrobial properties under varying thermal, pH, and UV conditions.

View Article and Find Full Text PDF

The detached leaf assay is a valuable method for studying plant-pathogen interactions, enabling the assessment of pathogenicity, plant resistance, and treatment effects. In this protocol, we outline how to set up a Phytophthora detached leaf assay and use non-expert machine learning tools to increase the reliability and throughput of the image analysis. Utilizing ilastik for pixel classification and Python scripts for segmentation, manual correction, and temporal linking, the pipeline provides objective and quantitative data over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!