Introduction: Because the role of Aedes albopictus as an incriminated vector of several viral pathogens, its control is important to human health. To establish appropriate control methods, characterization of the larval habitats is a necessary first step.
Objective: Habitats of the immature stages of Ae. albopictus were characterized with respect to physical-chemical parameters and by floral and faunal arrays present.
Materials And Methods: Leticia is located at the southernmost tip of Colombia on the banks of the Amazon River. In the urban area, 154 houses were inspected in December 2002 and January 2003. Physical-chemical data were collected, including exposure to sunlight, location, container size and material, water conductivity, and dissolved oxygen. Macroinvertebrates and plankton samples were taken at each positive larval site. The results were compared using descriptive analysis, principal component analysis, classification dendrograms, and diversity indexes.
Results: Twenty-one habitats were found positive for Diptera, and 13 were positive for Ae. albopictus larvae. Most of the positive habitats (92%) were located near the houses--they were small or medium size receptacles located in the shade. This water generally had low conductivity and low turbidity, although high values of these parameters were also identified. The habitats had low diversity indexes for macroinvertebrates and high diversity indexes for plankton. In the principal component analysis, significant correlation was found with mites, oligochaetes and hemipterans (the macroinvertebrates) and with bacilarophyceaes, clorophyceaes and cianophyceas (the algal forms).
Conclusion: In Leticia, females of Ae. albopictus were found in newly established habitats with sufficient availability of resources, low conductivity, and turbidity, lower intra-and interspecific competition.
Download full-text PDF |
Source |
---|
Taiwan J Ophthalmol
January 2024
Asociados de Macula, Vitreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colon, San Jose, Costa Rica.
Dengue is the most common arboviral disease. It is typically spread by the bite of an infected female or mosquitoes. Dengue is endemic in subtropical and tropical regions, but its geographic reach keeps expanding.
View Article and Find Full Text PDFEur J Public Health
January 2025
Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
Aedes albopictus is a widely recognized carrier of various pathogens. Its resilient characteristics enable it to easily spread across diverse climates. The microbiota in the midgut of mosquitoes plays a crucial role in the interactions between the host and pathogens and can either enhance or reduce the ability of the insect to transmit diseases.
View Article and Find Full Text PDFFront Chem
December 2024
African Society for Bioinformatics and Computational Biology, Cape Town, South Africa.
Introduction: Dengue Fever continues to pose a global threat due to the widespread distribution of its vector mosquitoes, and . While the WHO-approved vaccine, Dengvaxia, and antiviral treatments like Balapiravir and Celgosivir are available, challenges such as drug resistance, reduced efficacy, and high treatment costs persist. This study aims to identify novel potential inhibitors of the Dengue virus (DENV) using an integrative drug discovery approach encompassing machine learning and molecular docking techniques.
View Article and Find Full Text PDFMicroorganisms
December 2024
Program in Public Health, School of Medicine, University of California, Irvine, CA 92617, USA.
, a major vector of dengue virus (DENV), has a global distribution. Identifying the key components of the ubiquitin system of essential for the replication of viruses could help identify targets for developing broad-spectrum antiviral strategies. This study explores the interaction between E2 ubiquitin-conjugating enzymes (Ubc9) and DENV-2 proteins (NS1, NS5, and E) using cell culture and mosquito models.
View Article and Find Full Text PDFPathogens
December 2024
Department of Biology, University Josip Juraj Strossmayer of Osijek, 31000 Osijek, Croatia.
The West Nile virus (WNV) has recently become more widespread, posing a threat to both human and animal health. In Western Europe, most outbreaks have been caused by WNV lineage 1, while in Eastern Europe, WNV lineage 2 has led to human and bird mortality. The ability to appropriately manage this threat is dependent on integrated surveillance and early detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!