Neurofibromatosis type 1 (NF1) is one of the most commonly inherited autosomal dominant disorders. In order to determine whether genomic alterations and/or chromosomal aberrations involved in the malignant progression of NF1 were present in a Korean patient with NF1, molecular and cytogenetic analyses were performed on the pathologically normal, benign, and malignant tissues and primary cells cultured from those tissues of the patient. The comparative genomic hybridization (CGH) array revealed a Y chromosome loss in the malignant peripheral nerve sheet tumor (MPNST) tissue. G-banding analysis of 50 metaphase cells showed normal chromosomal patterns in the histopathologically normal and benign cultured cells, but a mosaic Y chromosome loss in the malignant cells. The final karyotype for the malignant cells from MPNST tissue was 45,X,-Y[28]/46,XY[22]. The data suggest that the somatic Y chromosome loss may be involved in the transformation of benign tumors to MPNSTs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858846PMC
http://dx.doi.org/10.3346/jkms.2010.25.5.804DOI Listing

Publication Analysis

Top Keywords

chromosome loss
12
malignant peripheral
8
peripheral nerve
8
nerve sheet
8
sheet tumor
8
neurofibromatosis type
8
normal benign
8
loss malignant
8
mpnst tissue
8
malignant cells
8

Similar Publications

Friedreich Ataxia: An (Almost) 30-Year History After Gene Discovery.

Neurol Genet

February 2025

Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.

In the late 1800s, Nikolaus Friedreich first described "degenerative atrophy of the posterior columns of the spinal cord," noting its connection to progressive ataxia, sensory loss, and muscle weakness, now recognized as Friedreich ataxia (FRDA). Renewed interest in the disease in the 1970s and 80s by the Quebec Cooperative Group and by Anita Harding led to the development of clinical diagnostic criteria and insights into associated biochemical abnormalities, although the primary defect remained unknown. In 1988, Susan Chamberlain mapped FRDA's location on chromosome 9.

View Article and Find Full Text PDF

Genomic and phenotypic correlates of mosaic loss of chromosome Y in blood.

Am J Hum Genet

January 2025

Division of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA. Electronic address:

Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole-genome sequencing (WGS) of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program.

View Article and Find Full Text PDF

High cellular plasticity state of medulloblastoma local recurrence and distant dissemination.

Cell Rep Med

January 2025

Beijing Neurosurgical Institute, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China. Electronic address:

Medulloblastoma (MB), a heterogeneous pediatric brain tumor, poses challenges in the treatment of tumor recurrence and dissemination. To characterize cellular diversity and genetic features, we comprehensively analyzed single-cell/nucleus RNA sequencing (sc/snRNA-seq), single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), and spatial transcriptomics profiles and identified distinct cellular populations in SHH (sonic hedgehog) and Group_3 subgroups, with varying proportions in local recurrence or dissemination. Local recurrence showed higher cycling tumor cell enrichment, whereas disseminated lesions had a relatively notable presence of differentiated subsets.

View Article and Find Full Text PDF

Blended phenotype of TECPR2-associated hereditary sensory-autonomic neuropathy and Temple syndrome.

Ann Clin Transl Neurol

January 2025

Department of Neurology, Movement Disorders Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Uniparental isodisomy (UPiD) can cause mixed phenotypes of imprinting disorders and autosomal-recessive diseases. We present the case of a 3-year-old male with a blended phenotype of TECPR2-related hereditary sensory and autonomic neuropathy (HSAN9) and Temple syndrome (TS14) due to maternal UPiD of chromosome 14, which includes a loss-of-function founder variant in the TECPR2 gene [NM_014844.5: c.

View Article and Find Full Text PDF

Viral diseases severely impact maize yields, with occurrences of maize viruses reported worldwide. Deployment of genetic resistance in a plant breeding program is a sustainable solution to minimize yield loss to viral diseases. The meta-QTL (MQTL) has demonstrated to be a promising approach to pinpoint the most robust QTL(s)/candidate gene(s) in the form of an overlapping or common genomic region identified through leveraging on different research studies that independently report genomic regions significantly associated with the target traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!