In failing hearts, coronary flow is normal, but the coronary flow reserve (CFR) is reduced, so demand-induced ischemia (DII) may occur in response to greater demand for O(2). The objectives of this study were: (i) to verify that dobutamine stimulation produces DII in isolated rat hearts having, like failing hearts, increased left ventricular end-diastolic pressure (LVEDP) and hence reduced CFR and (ii) to study the effects of stimulation of glucose oxidation and of inhibition of fatty acid oxidation in this new model of DII. Isolated rat hearts perfused with 11 mM glucose and 0.6 mM palmitate (or no palmitate) were studied. Stepwise increments in the volume of a balloon placed in LV resulted in reciprocal impairment of CFR, supporting the role of the extravascular compressive forces in determining CFR. CFR was 1.82+/-0.1 and 1.32+/-0.1 (p<0.05) in the hearts with LVEDP set to 5 mmHg (controls) and 40 mmHg (expanded), respectively. In controls, dobutamine increased coronary flow, myocardial oxygen consumption (MVO(2)), LVDP, mechanical efficiency, and the rates of palmitate and glucose oxidation, however, the effluent lactate concentration remained unchanged. In the expanded hearts vs. controls, dobutamine-induced increases in coronary flow and MVO(2) were reduced by approximately 50%, the increases in LVDP, efficiency, and rates of glucose and fatty acid oxidation were completely prevented, and lactate production greatly increased with dobutamine, indicating DII. Pyruvate dehydrogenase activator, dichloroacetate (DCA 1 mM) and a putative inhibitor of fatty acid beta-oxidation, trimetazidine (5 microM), both increased the rate of glucose oxidation and attenuated myocardial lactate production during DII, however they did not improve myocardial function during DII. Likewise, palmitate-free perfusion had no beneficial effect during DII although it attenuated lactate production. In the hearts subjected to palmitate-free perfusion plus DCA, lactate overproduction during DII was completely abolished, however, the deterioration of LVDP and mechanical efficiency was only partially prevented. Thus, greater demand for O(2) induces DII in the expanded hearts with reduced CFR. Lactate overproduction secondary to an imbalance between glycolysis and glucose oxidation is not a primary factor adversely affecting cardiac mechanical function during DII. Interventions shifting this balance toward glucose oxidation are not beneficial in the setting of DII in our model although they are known to effectively mitigate contractile dysfunction in the post-ischemic myocardium.

Download full-text PDF

Source

Publication Analysis

Top Keywords

isolated rat
12
demand-induced ischemia
8
failing hearts
8
coronary flow
8
dii isolated
8
rat hearts
8
cfr
5
ischemia volume
4
volume expanded
4
expanded isolated
4

Similar Publications

Postmenopausal osteoporosis (PMOP) is a chronic systemic bone metabolism disorder. Promotion in the patterns of human bone marrow mesenchymal stem cells (hBMSCs) differentiation towards osteoblasts contributes to alleviating osteoporosis. Aucubin, a natural compound isolated from the well-known herbal medicine Eucommia, was previously shown to possess various pharmacological effects.

View Article and Find Full Text PDF

The effects of social isolation (SI) during middle age remain unclear, so we tested the hypothesis that SI would lead to an increase in impulsive choice (IC), anxiety-like behavior, and metabolic dysfunction in middle-aged rats. Male and female rats were housed individually or in groups of four with same-sex housing mates at 11 months of age. Two months later, IC behavior was assessed using a delay-discounting task and anxiety-like behavior through a novelty-suppressed feeding (NSF) task.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IDD) is the main pathological factor resulting in low back pain (LBP), the leading cause of disability globally. Inflammatory response and extracellular matrix (ECM) degradation are critical pathological features in the development of IDD. Gastrodin (GAS), a phenol compound isolated from Gastrodia elata Blume, plays an anti-inflammatory role in experimental models of multiple human diseases.

View Article and Find Full Text PDF

Objective: A nanometer-sized vesicles originating from bone marrow mesenchymal stem cells (BMMSCs), called exosomes, have been extensively recognized. This study defines the impact of BMMSCs and their derived exosomes on proliferation, apoptosis and oxidative stress (OS) levels of CP-induced parotid salivary gland damage.

Methods: BMMSCs were isolated from the tibia of four white albino rats and further characterized by flowcytometric analysis.

View Article and Find Full Text PDF

Signalling pathways involved in urotensin II induced ventricular myocyte hypertrophy.

PLoS One

January 2025

Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom.

Sustained pathologic myocardial hypertrophy can result in heart failure(HF); a significant health issue affecting a large section of the population worldwide. In HF there is a marked elevation in circulating levels of the peptide urotensin II(UII) but it is unclear whether this is a result of hypertrophy or whether the high levels contribute to the development of hypertrophy. The aim of this study is to investigate a role of UII and its receptor UT in the development of cardiac hypertrophy and the signalling molecules involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!