During their annual breeding migration the Christmas Island land crab Gecarcoidea natalis sustains locomotion aerobically for up to 12 h per day compared with just 10 min during the dry season when their muscles quickly become anaerobic. A seasonal transition to an endurance-muscle phenotype would thus seem essential for migrating crabs. The current study employed a gene discovery approach comparing two expressed sequence tag (EST) libraries, one each for leg muscle from dry (non-migrating) and wet season (migrating) crabs. The 14 most abundant transcripts differed in their representation between the two libraries. The abundances of transcripts of genes predicted to code for different proteins forming contractile muscle components, including actin, troponin and tropomyosin, were significantly different between seasons and thus between physiological states. The shift in the isoform composition of the contractile elements provided evidence for a switch from slow phasic (S1) to slow tonic (S2) fatigue-resistant muscle fibres. A tropomyosin (tm) transcript aligned with a tm isoform of lobster (tmS2), and semi-quantitative RT-PCR confirmed this isoform to be more abundant in the migrating crab muscle. Two LIM protein coding genes, a paxillin-like transcript (pax) and a muscle LIM protein (mlp), were relatively up-regulated in muscle of wet season crabs. These proteins have a fundamental role in muscle development and reconstruction, and their comparative up-regulation is consistent with a remodelling of leg muscle for migration in the wet season. Such a transition would result in an increased representation of aerobic endurance-type fibres concomitant with the greater aerobic exercise capacity of the migrating red crabs.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.033829DOI Listing

Publication Analysis

Top Keywords

leg muscle
12
wet season
12
muscle
9
christmas island
8
crab gecarcoidea
8
gecarcoidea natalis
8
migrating crabs
8
muscle lim
8
lim protein
8
migration-related changes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!