New device for high-throughput viability screening of flow biofilms.

Appl Environ Microbiol

Microbiology & Immunology Department, Stanford University, Stanford, CA 94305-5124, USA.

Published: July 2010

Control of biofilms requires rapid methods to identify compounds effective against them and to isolate resistance-compromised mutants for identifying genes involved in enhanced biofilm resistance. While rapid screening methods for microtiter plate well ("static") biofilms are available, there are no methods for such screening of continuous flow biofilms ("flow biofilms"). Since the latter biofilms more closely approximate natural biofilms, development of a high-throughput (HTP) method for screening them is desirable. We describe here a new method using a device comprised of microfluidic channels and a distributed pneumatic pump (BioFlux) that provides fluid flow to 96 individual biofilms. This device allows fine control of continuous or intermittent fluid flow over a broad range of flow rates, and the use of a standard well plate format provides compatibility with plate readers. We show that use of green fluorescent protein (GFP)-expressing bacteria, staining with propidium iodide, and measurement of fluorescence with a plate reader permit rapid and accurate determination of biofilm viability. The biofilm viability measured with the plate reader agreed with that determined using plate counts, as well as with the results of fluorescence microscope image analysis. Using BioFlux and the plate reader, we were able to rapidly screen the effects of several antimicrobials on the viability of Pseudomonas aeruginosa PAO1 flow biofilms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897429PMC
http://dx.doi.org/10.1128/AEM.03065-09DOI Listing

Publication Analysis

Top Keywords

flow biofilms
12
plate reader
12
biofilms
8
fluid flow
8
biofilm viability
8
plate
7
flow
6
device high-throughput
4
viability
4
high-throughput viability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!