Characterization of the branched-chain amino acid aminotransferase enzyme family in tomato.

Plant Physiol

Horticultural Sciences Department and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611, USA.

Published: July 2010

Branched-chain amino acids (BCAAs) are synthesized in plants from branched-chain keto acids, but their metabolism is not completely understood. The interface of BCAA metabolism lies with branched-chain aminotransferases (BCAT) that catalyze both the last anabolic step and the first catabolic step. In this study, six BCAT genes from the cultivated tomato (Solanum lycopersicum) were identified and characterized. SlBCAT1, -2, -3, and -4 are expressed in multiple plant tissues, while SlBCAT5 and -6 were undetectable. SlBCAT1 and -2 are located in the mitochondria, SlBCAT3 and -4 are located in chloroplasts, while SlBCAT5 and -6 are located in the cytosol and vacuole, respectively. SlBCAT1, -2, -3, and -4 were able to restore growth of Escherichia coli BCAA auxotrophic cells, but SlBCAT1 and -2 were less effective than SlBCAT3 and -4 in growth restoration. All enzymes were active in the forward (BCAA synthesis) and reverse (branched-chain keto acid synthesis) reactions. SlBCAT3 and -4 exhibited a preference for the forward reaction, while SlBCAT1 and -2 were more active in the reverse reaction. While overexpression of SlBCAT1 or -3 in tomato fruit did not significantly alter amino acid levels, an expression quantitative trait locus on chromosome 3, associated with substantially higher expression of Solanum pennellii BCAT4, did significantly increase BCAA levels. Conversely, antisense-mediated reduction of SlBCAT1 resulted in higher levels of BCAAs. Together, these results support a model in which the mitochondrial SlBCAT1 and -2 function in BCAA catabolism while the chloroplastic SlBCAT3 and -4 function in BCAA synthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899903PMC
http://dx.doi.org/10.1104/pp.110.154922DOI Listing

Publication Analysis

Top Keywords

branched-chain amino
8
amino acid
8
branched-chain keto
8
slbcat1
8
bcaa synthesis
8
function bcaa
8
bcaa
6
characterization branched-chain
4
acid aminotransferase
4
aminotransferase enzyme
4

Similar Publications

The microbiota-gut-brain axis is a pivotal medium of crosstalk between the central nervous system (CNS) and the gastrointestinal tract. It is an intricate network of synergistic molecular pathways that exert their effects far beyond their local vicinity and even affect the systemic functioning of the body. The current review explores the involvement of the gut-brain axis (GBA) in the functioning of the nervous system, with a special emphasis on the neurodegeneration, cognitive decline, and neuroinflammation that occur in Alzheimer's disease (AD) and Parkinson's disease (PD).

View Article and Find Full Text PDF

The correlation between Fischer's ratio and the risk of cardiac dysfunction in heart failure patients.

BMC Cardiovasc Disord

December 2024

Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.

Backgrounds: Due to the high mortality and hospitalization rate in chronic heart failure (HF), it is of great significance to study myocardial nutrition conditions. Amino acids (AAs) are essential nutrient metabolites for cell development and survival. This study aims to investigate the associations and prognostic value of plasma branched-chain amino acid/aromatic amino acid ratio (Fischer's ratio, FR) in patients with left ventricular ejection fraction (LVEF) ≤ 50%.

View Article and Find Full Text PDF

The sodium-dependent membrane transporter SLC6A15 (BAT2) belongs to the SLC6 family, which comprises carriers of amino acids and monoamines. BAT2 is expressed in the central nervous system (CNS), including the glutaminergic and GABAergic system. SLC6A15 supplies neurons with neutral amino acids.

View Article and Find Full Text PDF

Valine Restriction Extends Survival in a Drosophila Model of Short-Chain Enoyl-CoA Hydratase 1 (ECHS1) Deficiency.

J Inherit Metab Dis

January 2025

Department of Biochemistry and Chemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia.

Short-chain enoyl-CoA hydratase 1 deficiency (ECHS1D) is a rare genetic disorder caused by biallelic pathogenic variants in the ECHS1 gene. ECHS1D is characterised by severe neurological and physical impairment that often leads to childhood mortality. Therapies such as protein and single nutrient-restricted diets show poor efficacy, whereas the development of new treatments is hindered by the low prevalence of the disorder and a lack of model systems for treatment testing.

View Article and Find Full Text PDF

Maple syrup urine disease (MSUD) is an inborn error of metabolism characterized by the accumulation of branched-chain amino acids (leucine, isoleucine, and valine) caused by a defect in the branched-chain alpha-keto acid dehydrogenase complex. Liver transplant is an effective therapy for MSUD, and patients can usually tolerate a regular diet after transplant without symptomatic metabolic decompensation. Most post-transplant patients do not follow a sick-day diet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!