Rapid glycosylations under extremely mild acidic conditions. Use of ammonium salts to activate glycosyl phosphites via P-protonation.

Carbohydr Res

Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Building 702, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan.

Published: June 2010

Trifluoromethanesulfonic acid salts of tertiary amines were employed as extremely mild acidic activators for rapid glycosylations. Glycosyl phosphite triesters bearing an acid-labile 4,4'-dimethoxytrityl (DMTr) group for transient protection worked as glycosyl donors effectively in the presence of the activators to afford the corresponding disaccharides in good yields without loss of the DMTr group.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carres.2010.03.009DOI Listing

Publication Analysis

Top Keywords

rapid glycosylations
8
extremely mild
8
mild acidic
8
dmtr group
8
glycosylations extremely
4
acidic conditions
4
conditions ammonium
4
ammonium salts
4
salts activate
4
activate glycosyl
4

Similar Publications

Low temperature is the main strategy to preserve fruit quality post-harvest, in the supply chain. Low temperatures reduce the respiration, ethylene emission, and enzymatic activities associated with senescence. Unfortunately, peaches are sensitive to low temperatures if exposed for long periods, resulting in physiological disorders that can compromise commercial quality.

View Article and Find Full Text PDF

Fibroblast activation protein (FAP) is an important antigen in the tumor microenvironment, which plays a crucial role in promoting extracellular matrix remodeling and tumor cell metastasis. A circulating form of soluble FAP has also been identified in the serum, becoming a biomarker for pan-cancer diagnosis and prognosis. However, the current peptide substrate-based enzymatic activity detection or antibody-dependent detection methods have been hindered by insufficient selectivity and complex operations, so it is valuable to develop effective nucleic acid aptamers as FAP affinity ligands.

View Article and Find Full Text PDF

Site-specific analysis and functional characterization of N-linked glycosylation for β-Klotho protein.

Int J Biol Macromol

December 2024

State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China. Electronic address:

β-Klotho (KLB), a type I transmembrane protein, serves as an obligate co-receptor determining the tissue-specific actions of endocrine fibroblast growth factors (FGFs). Despite accumulative evidence suggesting the occurrence of N-glycosylation in the KLB protein, the precise N-glycosites, glycoforms, and the impacts of N-glycosylation on the expression and function of the KLB protein remain unexplored. Employing a mass spectrometry-based approach, a total of 12 N-glycosites displaying heterogeneous site occupancy and glycoforms were identified within the extracellular region of the recombinant human KLB protein.

View Article and Find Full Text PDF

A STT3A-dependent PD-L1 glycosylation modification mediated by GMPS drives tumor immune evasion in hepatocellular carcinoma.

Cell Death Differ

December 2024

Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.

Hepatocellular carcinoma (HCC) is a malignant tumor characterized by rapid progression. To explore the regulatory mechanism of rapid tumor growth and metastasis, we conducted proteomic and scRNA-Seq analyses on advanced HCC tissues and identified a significant molecule, guanine monophosphate synthase (GMPS), closely associated with the immune evasion in HCC. We analyzed the immune microenvironment characteristics remodeled by GMPS using scRNA-Seq and found GMPS induced tumor immune evasion in HCC by impairing the tumor-killing function of CD8  T cells.

View Article and Find Full Text PDF

Plasmopara viticola causes grape downy mildew, one of the most notorious diseases of cultivated grapes that damage vineyards worldwide. The pathogen secretes various effector molecules to infect and modulate the host biological processes. In this study, we aimed to evaluate the roles of KPvRxLR27, an arginine-any amino acid-leucine-arginine (RxLR) effector isolated from P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!