Schizophrenia (SCZ) and bipolar disorder (BPD) are severe heritable psychiatric disorders involving a complex genetic aetiology. Neuregulin 1 (NRG1) is a leading candidate gene for SCZ, and has recently been implicated in BPD. We previously reported association of two NRG1 haplotypes with SCZ and BPD in a Scottish case-control sample. One haplotype is located at the 5' end of the gene (region A), and the other is located at the 3' end (region B). Here, association to haplotypes within regions A and B was assessed in patients with SCZ and BPD in a second Scottish case-control sample and in the two Scottish samples combined. Association to region B was also assessed in patients with SCZ and BPD in a German case-control sample, and in all three samples combined. No evidence was found for association in the new samples when analysed individually; however, in the joint analysis of the two Scottish samples, a region B haplotype comprising two SNPs (rs6988339 and rs3757930) was associated with SCZ and the combined case group (SCZ: p=0.0037, OR=1.3, 95% CI: 1.1-1.6; BPD+SCZ: p=0.0080, OR=1.2, 95% CI: 1.1-1.5), with these associations withstanding multiple testing correction at the single-test level (SCZ: p(st)=0.022; BPD+SCZ: p(st)=0.044). This study supports the involvement of NRG1 variants in the less well studied 3' region in conferring susceptibility to SCZ and BPD in the Scottish population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2010.04.056 | DOI Listing |
Transl Psychiatry
November 2024
National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan.
Schizophr Bull
November 2024
Department of Biological Sciences, University of Limerick, Limerick V94T9PX, Ireland.
Background And Hypothesis: The amygdala, crucial for mood, anxiety, fear, and reward regulation, shows neuroanatomical and molecular divergence in psychiatric disorders like schizophrenia, bipolar disorder and major depression. This region is also emerging as an important regulator of metabolic and immune pathways. The goal of this study is to address the paucity of molecular studies in the human amygdala.
View Article and Find Full Text PDFCommun Med (Lond)
September 2024
National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan.
Background: It has been proposed that having a psychiatric disorder could increase the risk of developing a gastrointestinal disorder, and vice versa. The role of familial coaggregation and shared genetic loading between psychiatric and gastrointestinal disorders remains unclear.
Methods: This study used the Taiwan National Health Insurance Research Database; 4,504,612 individuals born 1970-1999 with parental information, 51,664 same-sex twins, and 3,322,959 persons with full-sibling(s) were enrolled.
bioRxiv
August 2024
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.
Mental illnesses extract a high personal and societal cost, and thus explorations of the links between mental illness and functional connectivity in the brain are critical. Investigating major mental illnesses, believed to arise from disruptions in sophisticated neural connections, allows us to comprehend how these neural network disruptions may be linked to altered cognition, emotional regulation, and social interactions. Although neuroimaging has opened new avenues to explore neural alterations linked to mental illnesses, the field still requires precise and sensitive methodologies to inspect these neural substrates of various psychological disorders.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
Genetic variants in are associated with neurodevelopmental disorders (NDDs) including schizophrenia (SCZ), autism spectrum disorder (ASD) and intellectual disability. TRIO uses its two guanine nucleotide exchange factor (GEF) domains to activate GTPases (GEF1: Rac1 and RhoG; GEF2: RhoA) that control neuronal development and connectivity. It remains unclear how discrete variants differentially impact these neurodevelopmental events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!