Candida albicans is responsible for serious fungal infections in humans. Analysis of its genome identified NCP1 gene coding for a putative NADPH-P450 reductase (NPR) enzyme. This enzyme appears to supply reducing equivalents to cytochrome P450 or heme oxygenase enzymes for fungal survival and virulence. In this study, we report the characterization of the functional features of NADPH-P450 reductase from C. albicans. The recombinant C. albicans NPR protein harboring a 6x(His)-tag was expressed heterologously in Escherichia coli, and was purified. Purified C. albicans NPR has an absorption maximum at 453 nm, indicating the feature of an oxidized flavin cofactor, which was decreased by the addition of NADPH. It also evidenced NADPH-dependent cytochrome c or nitroblue tetrazolium reducing activity. This purified reductase protein was successfully able to substitute for purified mammalian NPR in the reconstitution of the human P450 1A2-catalyzed O-deethylation of 7-ethoxyresorufin. These results indicate that purified C. albicans NPR is an orthologous reductase protein that supports cytochrome P450 or heme oxygenase enzymes in C. albicans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2010.04.138 | DOI Listing |
Plant Physiol Biochem
December 2024
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China. Electronic address:
Cytochrome P450 enzymes (CYPs), the members of the largest superfamily of enzymes in plant kingdom, catalyze a variety of functional group transformations involved in metabolite biosynthesis, end-product derivatization, and exogeneous molecule detoxification. Nevertheless, CYPs' functional characterization and practically industrial application have been largely encumbered by their critical dependency on the reducing equivalent for the catalytic cycling, driven by the tedious electron relay mediated by CYP reductase (CPR). Here, we report a photoinduced electron transfer system that initiates and sustains the CYP-catalyzed reaction cycling.
View Article and Find Full Text PDFBiotechnol Lett
November 2024
School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, 77 Yongbongro, Gwangju, 61186, Republic of Korea.
The monooxygenase activity of engineered CYP102A1 on α-terpineol was investigated. CYP102A1 M850 mutant (F11Y/R47L/D68G/F81I/F87V/E143G/L188Q/E267V/H408R) showed the highest catalytic activity toward α-terpineol among the engineered mutants produced by random mutagenesis. The major product (P1) of α-terpineol, p-menth-1-ene-3,8-diol, was characterized by high-performance liquid chromatography, gas-chromatography mass spectrometry, and nuclear magnetic resonance spectroscopy.
View Article and Find Full Text PDFBull Entomol Res
November 2024
Department of Entomology, China Agricultural University, Beijing100193, P.R. of China.
Nat Commun
November 2024
Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
Eukaryotic cytochrome P450 enzymes, generally colocalizing with their redox partner cytochrome P450 reductase (CPR) on the cytoplasmic surface of organelle membranes, often perform poorly in prokaryotic cells, whether expressed with CPR as a tandem chimera or free-floating individuals, causing a low titer of heterologous chemicals. To improve their biosynthetic performance in Escherichia coli, here, we architecturally design self-assembled alternatives of eukaryotic P450 system using reconstructed P450 and CPR, and create a set of N-termini-bridged P450-CPR heterodimers as the counterparts of eukaryotic P450 system with N-terminus-guided colocalization. The covalent counterparts show superior and robust biosynthetic performance, and the N-termini-bridged architecture is validated to improve the biosynthetic performance of both plant and human P450 systems.
View Article and Find Full Text PDFBiotechnol J
November 2024
MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China.
Murideoxycholic acid (MDCA), as a significant secondary bile acid derived from the metabolism of α/β-muricholic acid in rodents, is an important component in maintaining the bile acid homeostasis. However, the biosynthesis of MDCA remains a challenging task. Here, we present the development of cytochrome P450 monooxygenase CYP102A1 (P450 BM3) from Bacillus megaterium, employing semi-rational protein engineering technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!