Unlabelled: Learning to read is a major obstacle for children who are deaf. The otherwise significant role of phonology is often limited as a result of hearing loss. However, semantic knowledge may facilitate reading comprehension. One important aspect of semantic knowledge concerns semantic categorization. In the present study, the quality of the semantic categorization of both deaf and hearing children was examined for written words and pictures at two categorization levels. The deaf children performed better at the picture condition compared to the written word condition, while the hearing children performed similarly at pictures and written words. The hearing children outperformed the deaf children, in particular for written words. In addition, the results of the deaf children for the written words correlated to their sign vocabulary and sign language comprehension. The increase in semantic categorization was limited across elementary school grade levels.
Learning Outcomes: Readers will be able to: (1) understand several semantic categorization differences between groups of deaf and hearing children; (2) describe factors that may affect the development of semantic categorization, in particular the relationship between sign language skills and semantic categorization for deaf children.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcomdis.2010.03.001 | DOI Listing |
Hyperspectral images (HSI) have been extensively applied in a multitude of domains, due to their combined spatial and spectral characteristics along with a wealth of spectral bands. The ingenious combination of spatial and spectral information in HSI classification has remained a central research area for an extended period. In the classification process, it is essential to choose an expanded neighborhood window for learning.
View Article and Find Full Text PDFCurr Opin Oncol
January 2025
Gustave Roussy, Villejuif, France.
Purpose Of Review: Although the management of nausea and vomiting induced by cancer treatments has evolved, several questions remain unanswered.
Recent Findings: New antiemetics have been developed these last decades with therapeutic indications to be defined according to the anticancer regimen and partly as a consequence of the assessment of individual patient risk factors. Guidelines still seem to have a low level of knowledge and compliance, with a role for scientific societies in term of dissemination and education.
J Biomed Inform
January 2025
Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, USA; VA Boston Healthcare System, 150 S Huntington Ave, Boston, 02130, MA, USA. Electronic address:
Objective: Electronic health record (EHR) systems contain a wealth of clinical data stored as both codified data and free-text narrative notes (NLP). The complexity of EHR presents challenges in feature representation, information extraction, and uncertainty quantification. To address these challenges, we proposed an efficient Aggregated naRrative Codified Health (ARCH) records analysis to generate a large-scale knowledge graph (KG) for a comprehensive set of EHR codified and narrative features.
View Article and Find Full Text PDFCortex
December 2024
Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Berlin, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany; University Hospital and Faculty of Medicine Leipzig, Clinic for Cognitive Neurology, Leipzig, Germany.
Retrieving words quickly and correctly is an important language competence. Semantic contexts, such as prior naming of categorically related objects, can induce conceptual priming but also lexical-semantic interference, the latter likely due to enhanced competition during lexical selection. In the continuous naming (CN) paradigm, such semantic interference is evident in a linear increase in naming latency with each additional member of a category out of a seemingly random sequence of pictures being named (cumulative semantic interference/CSI effect).
View Article and Find Full Text PDFSensors (Basel)
January 2025
The 54th Research Institute, China Electronics Technology Group Corporation, College of Signal and Information Processing, Shijiazhuang 050081, China.
The multi-sensor fusion, such as LiDAR and camera-based 3D object detection, is a key technology in autonomous driving and robotics. However, traditional 3D detection models are limited to recognizing predefined categories and struggle with unknown or novel objects. Given the complexity of real-world environments, research into open-vocabulary 3D object detection is essential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!