Two species of waterfowl living at high altitude provide a prominent example of parallel adaptation at the molecular level. The bar-headed goose (Anser indicus) breeds at high elevations in central Asia and migrates across the Himalayas, where the partial pressure of oxygen (O(2)) is one-third of sea level. In South America, the distantly related Andean goose (Chloephaga melanoptera) is endemic to the high Andes. Both species exhibit increased blood-O(2) affinity, which has been attributed to the effects of single amino acid substitutions in the major hemoglobin. Here we present phylogenetic analyses of the swans and geese (Anserinae) and South American sheldgeese (Anatinae) using the three genes that encode the major (HbA) and minor (HbD) hemoglobin isoforms. We sought to determine whether two amino acid substitutions that have been the focus of extensive biochemical analysis (Ala-alpha(A)119 and Ser-beta(A)55) are uniquely derived in bar-headed goose and Andean goose, respectively, and to examine evidence of molecular adaptation at other positions in hemoglobin genes by comparing these two high-altitude taxa to their closest relatives. Bayesian analysis of the alpha(A)-, alpha(D)-, and beta(A)-subunit genes produced well-resolved phylogenies, with high posterior probabilities and bootstrap values for most genera. The bar-headed goose is likely sister to all other Anser species. Andean goose, the sole highland representative of the South American sheldgeese is either sister to the other Chloephaga species or sister to Neochen. In the bar-headed goose, four derived substitutions were observed in HbA (alpha(A)12, 18, 63, 119) and two in HbD (alpha(D)2, 47). Four derived substitutions in Andean goose include three in HbA (alpha(A)8, 77; beta(A)86) and two in HbD (alpha(D)9; beta(A)86). Considering both highland species, four substitutions (Ala-alpha(A)8, Ala-alpha(A)12, Ser-alpha(A)18, Leu-alpha(D)9) were located at adjacent positions on the A helix (or AB corner) of the alpha-chains, three others (Thr-alpha(A)77, Ser-beta(A)86, Ser-alpha(D)2) were in close proximity to inositolpentaphosphate (IP(5)) binding sites, and Ala-alpha(A)119 occurred at an alphabeta intersubunit contact. Ser-beta(A)55, which is involved in the same alphabeta intersubunit contact and was previously shown to increase Hb-O(2) affinity, is not unique to Andean goose, but is a synapomorphy of the South American sheldgeese, a clade of predominantly lowland waterfowl. Our findings illustrate the importance of understanding phylogenetic relationships and polarity of character-state changes when making inferences about adaptive evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2010.04.034DOI Listing

Publication Analysis

Top Keywords

andean goose
24
bar-headed goose
20
south american
12
american sheldgeese
12
goose
11
hemoglobin genes
8
goose anser
8
anser indicus
8
goose chloephaga
8
chloephaga melanoptera
8

Similar Publications

Different strategies for convective O transport in high altitude birds: A graphical analysis.

Comp Biochem Physiol A Mol Integr Physiol

March 2021

Department of Biology, Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Coral Gables, FL 33146, USA.

For illustrative purposes, in this article we use "Johansen Plots" as a graphical way of simultaneously visualizing the inter-connected variables that compose the convective steps of the gas transport cascade. These plots are used to reflect on some of the physiological characteristics seen in five species of birds, four of which sojourn to, or are native to, high altitudes (the barnacle goose, bar-headed goose, Andean goose, speckled teal and ruddy duck). These species were chosen to emphasize the diversity of responses to hypoxia that can exist within a single family.

View Article and Find Full Text PDF

We examined the morphology of the lungs of five species of high-altitude resident ducks from Lake Titicaca in the Peruvian Andes (yellow-billed pintail [Anas georgica], cinnamon teal [Anas cyanoptera orinomus], puna teal [Anas puna], speckled teal [Anas flavirostris oxyptera], and ruddy duck [Oxyura jamaicensis ferruginea]) and compared them with those of the high-altitude migratory bar-headed goose (Anser indicus) and the low-altitude migratory barnacle goose (Branta leucopsis). We then determined the relationship between mass-specific lung volume, the volume densities of the component parts of the lung, and previously reported hypoxia-induced increases in pulmonary O extraction. We found that the mass-specific lung volumes and the mass-specific volume of the exchange tissue were larger in the lungs of high-altitude resident birds.

View Article and Find Full Text PDF

The cardiovascular system is critical for delivering O to tissues. Here, we examined the cardiovascular responses to progressive hypoxia in four high-altitude Andean duck species compared with four related low-altitude populations in North America, tested at their native altitude. Ducks were exposed to stepwise decreases in inspired partial pressure of O while we monitored heart rate, O consumption rate, blood O saturation, haematocrit (Hct) and blood haemoglobin (Hb) concentration.

View Article and Find Full Text PDF

The cardiovascular system is critical for delivering O2 to tissues. Here we examine the cardiovascular responses to progressive hypoxia in four high-altitude Andean duck species compared to four related low-altitude populations in North America, tested at their native altitude. Ducks were exposed to stepwise decreases in inspired partial pressure of O2 while we monitored heart rate, O2 consumption rate, blood O2 saturation, haematocrit (Hct), and blood haemoglobin concentration [Hb].

View Article and Find Full Text PDF

Background: Hemoglobin (Hb) subunits are composed of the specific functional prosthetic group "heme'' and a protein moiety "globin". Bird Hbs are functionally similar to mammalian Hbs but they are structurally dissimilar with mammalian. The insufficient structural studies on avian Hbs limit us to understand their degree of adaptation to such critical environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!