A novel frameshift mutation of POU4F3 gene associated with autosomal dominant non-syndromic hearing loss.

Biochem Biophys Res Commun

Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.

Published: June 2010

Autosomal dominant mutations in the transcription factor POU4F3 gene are associated with non-syndromic hearing loss in humans; however, there have been few reports of mutations in this gene worldwide. We performed a mutation analysis of the POU4F3 gene in 42 unrelated Koreans with autosomal dominant non-syndromic hearing loss, identifying a novel 14-bp deletion mutation in exon 2 (c.662del14) in one patient. Audiometric examination revealed severe bilateral sensorineural hearing loss in this patient. The novel mutation led to a truncated protein that lacked both functional POU domains. We further investigated the functional distinction between wild-type and mutant POU4F3 proteins using in vitro assays. The wild-type protein was completely localized in the nucleus, while the truncation of protein seriously affected its nuclear localization. In addition, the mutant failed to activate reporter gene expression. This is the first report of a POU4F3 mutation in Asia, and moreover our data suggest that further investigation will need to delineate ethnicity-specific genetic background for autosomal dominant non-syndromic hearing loss within Asian populations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2010.04.132DOI Listing

Publication Analysis

Top Keywords

hearing loss
20
autosomal dominant
16
non-syndromic hearing
16
pou4f3 gene
12
dominant non-syndromic
12
gene associated
8
mutation
5
pou4f3
5
gene
5
hearing
5

Similar Publications

Transcriptome sequencing reveals regulatory genes associated with neurogenic hearing loss.

BMC Med Genomics

January 2025

Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China.

Hearing loss is a prevalent condition with a significant impact on individuals' quality of life. However, comprehensive studies investigating the differential gene expression and regulatory mechanisms associated with hearing loss are lacking, particularly in the context of diverse patient samples. In this study, we integrated data from 10 patients across different regions, age groups, and genders, with their data retrieved from a public transcriptome database, to explore the molecular basis of hearing loss.

View Article and Find Full Text PDF

Speechreading-gathering speech information from talkers' faces-supports speech perception when speech acoustics are degraded. Benefitting from speechreading, however, requires listeners to visually fixate talkers during face-to-face interactions. The purpose of this study is to test the hypothesis that preschool-aged children allocate their eye gaze to a talker when speech acoustics are degraded.

View Article and Find Full Text PDF

Oligogenic effect is associated with the clinical heterogeneity of autosomal dominant deafness-15.

Sci Rep

January 2025

Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China.

Autosomal dominant deafness-15 which is caused by mutation in the POU4F3 gene, has been reported with a wide degree of clinical heterogeneity, even between intrafamilial members. However, the reason is still elusive. In this study, A four-generation Chinese family with 11 patients manifesting late-onset progressive non-syndromic hearing loss was recruited.

View Article and Find Full Text PDF

Progressive Loss of Cerebral Structures in ALG11-Related Congenital Disorder Glycosylation.

Pediatr Neurol

December 2024

Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, District of Columbia; Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia. Electronic address:

Background: Congenital disorders of glycosylation (CDG) are a group of metabolic disorders related to dysfunctional glycoprotein and glycolipid biosynthesis. ALG11-related CDG is a rare member of this group, characterized by severe neurodevelopmental impairment, progressive microcephaly, sensorineural hearing loss, and epilepsy. The objective of this report is to provide an update on the phenotype and brain magnetic resonance imaging (MRI) at age seven years for a patient initially described in early infancy with fetal brain disruption sequence.

View Article and Find Full Text PDF

Background: Griscelli syndrome (GS) is a rare genetic disorder characterized by oculocutaneous albinism and variable immune dysfunction. Among three distinct types of GS, occurring due to different genetic mutations; GS type 1 presents with neurological manifestations, hemophagocytic lymphohistiocytosis (HLH) generally develops in GS type 2, and GS type 3 primarily exhibits oculocutaneous albinism. HLH, a life-threatening condition with excessive immune activation, may occur secondary to various triggers, including infections, and develop in different tissues, as well as in the testis, similar to Erdheim-Chester disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!