Background: The optimum treatment for high-risk soft-tissue sarcoma (STS) in adults is unclear. Regional hyperthermia concentrates the action of chemotherapy within the heated tumour region. Phase 2 studies have shown that chemotherapy with regional hyperthermia improves local control compared with chemotherapy alone. We designed a parallel-group randomised controlled trial to assess the safety and efficacy of regional hyperthermia with chemotherapy.
Methods: Patients were recruited to the trial between July 21, 1997, and November 30, 2006, at nine centres in Europe and North America. Patients with localised high-risk STS (> or = 5 cm, Fédération Nationale des Centres de Lutte Contre le Cancer [FNCLCC] grade 2 or 3, deep to the fascia) were randomly assigned to receive either neo-adjuvant chemotherapy consisting of etoposide, ifosfamide, and doxorubicin (EIA) alone, or combined with regional hyperthermia (EIA plus regional hyperthermia) in addition to local therapy. Local progression-free survival (LPFS) was the primary endpoint. Efficacy analyses were done by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT 00003052.
Findings: 341 patients were enrolled, with 169 randomly assigned to EIA plus regional hyperthermia and 172 to EIA alone. All patients were included in the analysis of the primary endpoint, and 332 patients who received at least one cycle of chemotherapy were included in the safety analysis. After a median follow-up of 34 months (IQR 20-67), 132 patients had local progression (56 EIA plus regional hyperthermia vs 76 EIA). Patients were more likely to experience local progression or death in the EIA-alone group compared with the EIA plus regional hyperthermia group (relative hazard [RH] 0.58, 95% CI 0.41-0.83; p=0.003), with an absolute difference in LPFS at 2 years of 15% (95% CI 6-26; 76% EIA plus regional hyperthermia vs 61% EIA). For disease-free survival the relative hazard was 0.70 (95% CI 0.54-0.92, p=0.011) for EIA plus regional hyperthermia compared with EIA alone. The treatment response rate in the group that received regional hyperthermia was 28.8%, compared with 12.7% in the group who received chemotherapy alone (p=0.002). In a pre-specified per-protocol analysis of patients who completed EIA plus regional hyperthermia induction therapy compared with those who completed EIA alone, overall survival was better in the combined therapy group (HR 0.66, 95% CI 0.45-0.98, p=0.038). Leucopenia (grade 3 or 4) was more frequent in the EIA plus regional hyperthermia group compared with the EIA-alone group (128 of 165 vs 106 of 167, p=0.005). Hyperthermia-related adverse events were pain, bolus pressure, and skin burn, which were mild to moderate in 66 (40.5%), 43 (26.4%), and 29 patients (17.8%), and severe in seven (4.3%), eight (4.9%), and one patient (0.6%), respectively. Two deaths were attributable to treatment in the combined treatment group, and one death was attributable to treatment in the EIA-alone group.
Interpretation: To our knowledge, this is the first randomised phase 3 trial to show that regional hyperthermia increases the benefit of chemotherapy. Adding regional hyperthermia to chemotherapy is a new effective treatment strategy for patients with high-risk STS, including STS with an abdominal or retroperitoneal location.
Funding: Deutsche Krebshilfe, Helmholtz Association (HGF), European Organisation of Research and Treatment of Cancer (EORTC), European Society for Hyperthermic Oncology (ESHO), and US National Institute of Health (NIH).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517819 | PMC |
http://dx.doi.org/10.1016/S1470-2045(10)70071-1 | DOI Listing |
Bioengineering (Basel)
December 2024
Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94115, USA.
In exploring adjuvant therapies for head and neck cancer, hyperthermia (40-45 °C) has shown efficacy in enhancing chemotherapy and radiation, as well as the delivery of liposomal drugs. Current hyperthermia treatments, however, struggle to reach large deep tumors uniformly and non-invasively. This study investigates the feasibility of delivering targeted uniform hyperthermia deep into the tissue using a non-invasive ultrasound spherical random phased array transducer.
View Article and Find Full Text PDFMol Pharm
January 2025
An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India.
It is well known that impaired wound healing associated with diabetes mellitus has led to a challenging problem as well as a global economic healthcare burden. Conventional wound care therapies like films, gauze, and bandages fail to cure diabetic wounds, thereby demanding a synergistic and promising wound care therapy. This investigation aimed to develop a novel, greener synthesis of a laser-responsive silver nanocolloid (LR-SNC) prepared using hyaluronic acid as a bioreductant.
View Article and Find Full Text PDFChemMedChem
January 2025
Université de Montpellier, IBMM UMR 5247 - Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293, Montpellier, FRANCE.
Tumor-associated human carbonic anhydrases (hCAs), particularly isoforms hCA IX and hCA XII, are overexpressed in hypoxic regions of solid tumors and play a crucial role in regulating pH homeostasis, promoting cancer cell survival and enhancing invasiveness. These enzymes have emerged as promising therapeutic targets in cancer treatment, including photothermal therapy (PTT). PTT is a minimally invasive technique that uses light-absorbing agents to convert near-infrared (NIR) light into heat, effectively inducing localized hyperthermia and promoting cancer cell apoptosis.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
National Institute of Materials Physics, Atomistilor Street, No 405 A, 077125 Magurele, Romania.
Nanocomposites based on FeO and carbonaceous nanoparticles (CNPs), including carbon nanotubes (CNTs) and graphene derivatives (graphene oxide (GO) and reduced graphene oxide (RGO)), such as FeO@GO, FeO@RGO, and FeO@CNT, have demonstrated considerable potential in a number of health applications, including tissue regeneration and innovative cancer treatments such as hyperthermia (HT). This is due to their ability to transport drugs and generate localized heat under the influence of an alternating magnetic field on FeO. Despite the promising potential of CNTs and graphene derivatives as drug delivery systems, their use in biological applications is hindered by challenges related to dispersion in physiological media and particle agglomeration.
View Article and Find Full Text PDFPoult Sci
December 2024
Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, 2425 Rue de l'Agriculture, Quebec City, Quebec G1V 0A6, Canada; Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montréal, 3200 Rue Sicotte, St-Hyacinthe, Quebec J2S 2M2, Canada. Electronic address:
This study aimed to characterize body temperature in finishing broiler chickens and to explore heat transfer dynamics under thermoneutral (TN) and heat stress (HS) conditions. To achieve this, 900 Ross 308 chicks were divided into TN and HS groups, with the HS group subjected to cyclical heat stress (30°C, 45 % RH) from day 28 to day 33 post-hatch. Rectal temperature (T) and skin temperature (T) at the face (T), eye (T), and breast (T) were measured.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!