Objective: Reactive oxygen and nitrogen species (e.g., peroxynitrite) may trigger neointima formation leading to restenosis. In a rat carotid endarterectomy (CEA) model, we investigated the effects of the manganese(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP), a superoxide dismutase (SOD) mimetic and peroxynitrite scavenger on neointima formation.

Methods: CEA was performed in male Sprague-Dawley rats. Animals received either vehicle (control group; n=15) or 15 mg kg(-1) day(-1) MnTBAP intraperitoneally for 3 weeks (treatment group; n=13). Four groups of carotids were analysed: the left, uninjured carotids (sham) and the right, injured carotids (control CEA) from the control group, the right, injured carotids from the treatment group (CEA+MnTBAP) and an additional group of carotids that were harvested 1h following endarterectomy. The analysis of carotid arteries was performed by histology, immunohistochemistry and real-time polymerase chain reaction (PCR). Plasma malondialdehyde (MDA) levels were measured by lipid hydroperoxidase assay.

Results: Stenosis rate (10.5+/-8.1% vs. 45.4+/-28.3%), the percentage of proliferating cell nuclear antigen-positive cells (13.4+/-7.1% vs. 23.3+/-11.0%) and nitrotyrosine immunoreactivity (5.8+/-1.9 vs. 8.0+/-2.0) were significantly reduced in the vascular wall of the CEA+MnTBAP group compared with control CEA group. Ratio of Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL)-positive nuclei was significantly lower after antioxidant therapy (41.7+/-26.7% vs. 64.9+/-18.5%). Plasma MDA levels increased after endarterectomy (11.7+/-4.8 vs. 4.1+/-2.0 micromol l(-1)) and reduced in the treatment group (3.2+/-2.1 micromol l(-1)). No significant gene regulation after MnTBAP treatment could be noted.

Conclusions: MnTBAP decreased neointima formation, which was associated with reduced vascular smooth muscle cell proliferation and attenuated local and systemic nitro-oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejvs.2010.03.024DOI Listing

Publication Analysis

Top Keywords

neointima formation
12
treatment group
12
superoxide dismutase
8
mimetic peroxynitrite
8
peroxynitrite scavenger
8
nitro-oxidative stress
8
group
8
control group
8
injured carotids
8
control cea
8

Similar Publications

In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.

View Article and Find Full Text PDF

Bone Marrow-derived NGFR-positive Dendritic Cells Regulate Arterial Remodeling.

Am J Physiol Cell Physiol

January 2025

Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan.

It has been proposed that bone marrow contributes to the pathogenesis of arteriosclerosis. Nerve growth factor receptor (NGFR) is expressed in bone marrow stromal cells; it is also present in peripheral blood and ischemic coronary arteries. We hypothesized that bone marrow-derived NGFR-positive (NGFR) cells regulate arterial remodeling.

View Article and Find Full Text PDF
Article Synopsis
  • Postinterventional restenosis poses challenges in treating peripheral vascular disease, as current drugs hinder endothelial repair while preventing neointima hyperplasia.
  • Stem cell-derived exosomes offer therapeutic benefits by delivering functional microRNAs but face limitations in targeting and tissue uptake in injured vessels.
  • To improve efficacy, researchers created platelet-mimetic exosomes (PM-EXOs) that enhance targeting to vascular injuries and promote endothelial repair with minimal side effects, demonstrating significant potential in reducing neointima formation.
View Article and Find Full Text PDF

Vessel Wall Histologic Changes in a Porcine Model of Arteriovenous Fistula Stenosis Treated with Percutaneous Transluminal Angioplasty.

J Vasc Interv Radiol

December 2024

Vascular and Interventional Radiology Translational Research Lab, Mayo Clinic, Rochester, MN, USA; Department of Radiology, Mayo Clinic, Rochester, MN, USA. Electronic address:

Article Synopsis
  • The study investigated how different treatments (balloon angioplasty vs. drug-coated balloons) affect the changes in blood vessel tissues following arteriovenous fistula stenosis in pigs with chronic kidney disease.
  • Significant differences in tissue composition were observed, with drug-coated balloons leading to lower neointimal growth and higher endothelial cell counts compared to standard angioplasty.
  • The findings suggest that using drug-coated balloons may improve vessel healing and reduce complications over time, as shown by varied immune cell responses and tissue growth patterns.
View Article and Find Full Text PDF

Introduction: Neointimal hyperplasia is one of the persistent complications after vascular interventions, and is the major cause of treatment failure. Interleukin-33 (IL-33) emerges as a crucial factor in many biological processes and plays an important role in vascular diseases. Adventitial injection is catching attention for its effectiveness and fewer side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!