Characterization of a discontinuous epitope of the HIV envelope protein gp120 recognized by a human monoclonal antibody using chemical modification and mass spectrometric analysis.

J Am Soc Mass Spectrom

Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Sciences, Research Triangle Park, North Carolina 27709, USA.

Published: October 2010

A subset of the neutralizing anti-HIV antibodies recognize epitopes on the envelope protein gp120 of the human immunodeficiency virus. These epitopes are exposed during conformational changes when gp120 binds to its primary receptor CD4. Based on chemical modification of lysine and arginine residues followed by mass spectrometric analysis, we determined the epitope on gp120 recognized by the human monoclonal antibody 559/64-D, which was previously found to be specific for the CD4 binding domain. Twenty-four lysine and arginine residues in recombinant full-length glycosylated gp120 were characterized; the relative reactivities of two lysine residues and five arginine residues were affected by the binding of 559/64-D. The data show that the epitope is discontinuous and is located in the proximity of the CD4-binding site. Additionally, the reactivities of a residue that is located in the secondary receptor binding region and several residues distant from the CD4 binding site were also altered by Ab binding. These data suggest that binding of 559/64-D induced conformational changes which result in altered surface exposure of specific amino acids distant from the CD4-binding site. Consequently, binding of 559/64-D to gp120 affects not only the CD4-binding site, which is recognized as the epitope, but appears to have a global effect on surface exposed residues of the full-length glycosylated gp120.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3008351PMC
http://dx.doi.org/10.1016/j.jasms.2010.03.031DOI Listing

Publication Analysis

Top Keywords

arginine residues
12
binding 559/64-d
12
cd4-binding site
12
envelope protein
8
protein gp120
8
gp120 recognized
8
recognized human
8
human monoclonal
8
monoclonal antibody
8
chemical modification
8

Similar Publications

Bacterial serine-threonine protein kinases (STKs) regulate diverse cellular processes associated with cell growth, virulence, and pathogenicity. They are evolutionarily related to the druggable eukaryotic STKs. However, an incomplete knowledge of how bacterial STKs differ from their eukaryotic counterparts and how they have diverged to regulate diverse bacterial signaling functions presents a bottleneck in targeting them for drug discovery efforts.

View Article and Find Full Text PDF

Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.

View Article and Find Full Text PDF

Peptide-Based Complex Coacervates Stabilized by Cation-π Interactions for Cell Engineering.

J Am Chem Soc

January 2025

Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.

Complex coacervation is a form of liquid-liquid phase separation, whereby two types of macromolecules, usually bearing opposite net charges, self-assemble into dense microdroplets driven by weak molecular interactions. Peptide-based coacervates have recently emerged as promising carriers to deliver large macromolecules (nucleic acids, proteins and complex thereof) inside cells. Thus, it is essential to understand their assembly/disassembly mechanisms at the molecular level in order to tune the thermodynamics of coacervates formation and the kinetics of cargo release upon entering the cell.

View Article and Find Full Text PDF

The papillomavirus E2 protein regulates the transcription, replication, and segregation of viral episomes within the host cell. A multitude of post-translational modifications have been identified which control E2 functions. A highly conserved di-lysine motif within the transactivation domain (TAD) has been shown to regulate the normal functions of the E2 proteins of BPV-1, SfPV1, HPV-16, and HPV-31.

View Article and Find Full Text PDF

Antibacterial and Antifungal Activities of Linear and Cyclic Peptides Containing Arginine, Tryptophan, and Diphenylalanine.

Antibiotics (Basel)

January 2025

Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA.

We have previously reported peptides composed of sequential arginine (R) residues paired with tryptophan (W) or 3,3-diphenyl-L-alanine residues (Dip), such as cyclic peptides [RW] and [R(Dip)], as antibacterial agents. Herein, we report antibacterial and antifungal activities of five linear peptides, namely ((DipR)(WR)), ((DipR)(WR)), ((DipR)(WR)), ((DipR)(WR)), and (DipR)R, and five cyclic peptides [(DipR)(WR)], [(DipR)(WR)], [(DipR)(WR)], [(DipR)(WR)], and [DipR], containing alternate positively charged R and hydrophobic W and Dip residues against fungal, Gram-positive, and Gram-negative bacterial pathogens. The minimum inhibitory concentrations (MICs) of all peptides were determined by the micro-broth dilution method against , , , , , , , , and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!