Heparan sulphate (HS) is a long, linear polysaccharide, which has a basic backbone of -beta1-4GlcA-alpha1-4GlcNAc- units. The involvement of HS in many steps of tumourigenesis, including growth and angiogenesis, makes it an appealing target for cancer therapy. To target the biosynthesis of HS by interfering with its chain elongation, a 4-deoxy analogue of N-acetyl-D-glucosamine (4-deoxy-GlcNAc) was synthesized. Using immunocytochemistry and agarose gel electrophoresis it was shown that incubation with the 4-deoxysugar resulted in a dose dependent reduction of HS expression of MV3 melanoma cells, 1 mM resulting in an almost nullified HS expression. The parent sugar GlcNAc had no effect. 4-deoxysugar treated cells were viable and proliferated at the same rate as control cells. Other glycan structures appeared to be only mildly affected, as staining by various lectins was generally not or only modestly inhibited. At 1 mM of the 4-deoxysugar, the capacity of cells to bind the HS-dependent pro-angiogenic growth factors FGF-2 and VEGF was greatly compromised. Using an in vitro angiogenesis assay, 4-deoxysugar treated endothelial cells showed a sharp reduction of FGF-2-induced sprout formation. Combined, these data indicate that an inexpensive, easily synthesized, water-soluble monosaccharide analogue can interfere with HS expression and pro-angiogenic growth factor binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2010.04.025 | DOI Listing |
Drug Des Devel Ther
June 2024
College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, People's Republic of China.
Background: Anthraquinone drugs are widely used in the treatment of tumors. However, multidrug resistance and severe cardiac toxicity limit its use, which have led to the discovery of new analogues. In this paper, 4-Deoxy--pyrromycinone (4-Deo), belonging to anthraquinone compounds, was first been studied with the anti-tumor effects and the safety in vitro and in vivo as a new anti-tumor drug or lead compound.
View Article and Find Full Text PDFEJNMMI Res
May 2024
Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.
Background: Approaches targeting the sodium-glucose cotransporter (SGLT) could represent a promising future therapeutic strategy for numerous oncological and metabolic diseases. In this study, we evaluated the safety, biodistribution and radiation dosimetry of the glucose analogue positron emission tomography (PET) agent [F] labeled alpha-methyl-4-deoxy-4-[F]fluoro-D-glucopyranoside ([F]Me4FDG) with high sodium-glucose cotransporter and low glucose transporter (GLUT) affinity. For this purpose, five healthy volunteers (1 man, 4 women) underwent multiple whole-body PET/computed tomography (CT) examinations starting with injection and up to 4 h after injection of averaged (2.
View Article and Find Full Text PDFApramycin is a widely used aminoglycoside antibiotic with applications in veterinary medicine. It is composed of a 4-amino-4-deoxy-d-glucose moiety and the pseudodisaccharide aprosamine, which is an adduct of 2-deoxystreptamine and an unusual eight-carbon bicyclic dialdose. Despite its extensive study and relevance to medical practice, the biosynthetic pathway of this complex aminoglycoside nevertheless remains incomplete.
View Article and Find Full Text PDFJ Appl Glycosci (1999)
December 2023
1 Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University.
Some probiotics including lactobacilli, colonize host animal cells by targeting glycosaminoglycans (GAGs), such as heparin, located in the extracellular matrix. Recent studies have shown that several lactic acid bacteria degrade GAGs. Here we show the structure/function relationship of 4-deoxy-L--5-hexosulose-uronate ketol-isomerase (KduI) crucial for metabolism of unsaturated glucuronic acid produced through degradation of GAGs.
View Article and Find Full Text PDFBiochemistry
July 2023
Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.
Polymyxins are important last resort antibiotics for the treatment of infections caused by multidrug-resistant Gram-negative pathogens. However, pathogens have acquired resistance to polymyxins through a pathway that modifies lipid A with 4-amino-4-deoxy-l-arabinose (Ara4N). Inhibition of this pathway is, therefore, a desirable strategy to combat polymyxin resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!