A bioprocess intensification strategy that combines both elicitation and in situ absorption was developed to improve the production of taxuyunnanine c (Tc) in cell suspension cultures of Taxus chinensis. When 100 micromol/L methyl jasmonate was added as an elicitor on Day 7, the Tc content and yield increased 3.6 and 3.3 times respectively, however the cell growth was reduced by 10%-30%. Significant improvement in Tc yield was observed when an absorbent XAD-7 was added on different time of the culture period. The optimum Tc yield was achieved when 100 g/L XAD-7 was added simultaneously with 100 micromol/L methyl jasmonate on Day 7. The maximum Tc yield of 477.4 mg/L was obtained on Day 21 of the culture, being 6.3-fold of the control and 1.9-fold of the 100 micromol/L methyl jasmonate treatment alone. In the combined treatment, 94% of the Tc produced was secreted outside of the cells and absorbed on XAD-7 absorbents. The results demonstrated that the process strategy combining elicitation and in situ absorption was effective to intensify the Tc biosynthesis via elicitation with the removal of product feedback inhibition via absorption, presenting a great potential in commercial applications.

Download full-text PDF

Source

Publication Analysis

Top Keywords

methyl jasmonate
16
elicitation situ
12
100 micromol/l
12
micromol/l methyl
12
production taxuyunnanine
8
taxuyunnanine cell
8
cell suspension
8
suspension cultures
8
cultures taxus
8
taxus chinensis
8

Similar Publications

Background: Owing to its high perishability, the market life of nectarine fruit is very short. Cold storage is a principal approach to limit post-harvest quality loss in nectarines. The objective of this research was to evaluate the impact of postharvest methyl jasmonate (MeJA), salicylic acid (SA) and 1-methylcyclopropene (1-MCP) on quality properties of nectarine fruit, specifically weight loss, firmness, phenolics and antioxidant activity, following cold storage and subsequent shelf life.

View Article and Find Full Text PDF

Chrysanthemum morifolium is rich in hydroxyflavonoids and methoxyflavonoids(OMFs), and dissecting the biosynthetic pathway of OMFs in Ch. morifolium is of great theoretical and economic value because of the diverse physiological activities and pharmacological effects of OMFs. To investigate the biosynthetic pathway of OMFs in Ch.

View Article and Find Full Text PDF

Total Synthesis of (+)-Mannolide B.

J Am Chem Soc

December 2024

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China.

(+)-Mannolide B possesses an intriguing and complex 5/7/5/6/6/6-fused hexacyclic scaffold including two bridged-lactone moieties and nine contiguous stereocenters, and thus represents a formidable challenge for total synthesis. Herein, the evolution of a successful strategy for the synthesis of mannolide B is described. The 7/5 ring system of the 7/5/6/6 tetracyclic carbon skeleton was efficiently constructed by a ring-closing metathesis starting from commercially available (-)-methyl jasmonate.

View Article and Find Full Text PDF

Influence of ZnSO and Methyl Jasmonate on the Metabolites and Bioactivity Present in Lemon-Fruit Membrane Vesicles.

Int J Mol Sci

November 2024

Group of Aquaporins, Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Apdo. de Correos 4195, 30080 Murcia, Spain.

Membrane vesicles isolated from vegetable tissues have shown promise in encapsulation technologies used in industries like food and cosmetics, offering innovative approaches to product development. However, their associated linked metabolites have not been studied. Lemon vesicle research not only adds value to the lemon crop ( L.

View Article and Find Full Text PDF

Methyl jasmonate enabled maintained the postharvest flavor quality of ginger (Zingiber officinale roscoe) by reducing the loss of terpene volatile compounds.

Food Chem

December 2024

Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; College of Smart Agriculture /Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, Chongqing, China. Electronic address:

Ginger, as a globally vital medicinal and food homologous crop, plays an irreplaceable role in human diet and healthcare. However, during the storage of ginger, the decline of physical properties and degradation of volatile flavor quality have emerged as an industrial concern that severely restricts the market value of the product. MeJA plays an essential role in extending fruit shelf life and regulate the synthesis of volatiles in horticultural products, yet its application in ginger remains unreported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!