AI Article Synopsis

  • Recent advances in induced pluripotent stem (iPS) cell research have transformed regenerative medicine, allowing for patient-specific cells for disease modeling and cell replacement therapy.
  • However, there is still a lack of data confirming that iPS cells are as safe and effective as human embryonic stem (hES) cells, and key issues like safety and efficacy remain unresolved.
  • This study successfully demonstrates the reprogramming of endoderm-derived human cells, specifically hepatocytes, into iPS cells that show similar characteristics to hES cells, facilitating better research into liver diseases and understanding cellular reprogramming mechanisms.

Article Abstract

Unlabelled: Recent advances in induced pluripotent stem (iPS) cell research have significantly changed our perspective on regenerative medicine. Patient-specific iPS cells have been derived not only for disease modeling but also as sources for cell replacement therapy. However, there have been insufficient data to prove that iPS cells are functionally equivalent to human embryonic stem (hES) cells or are safer than hES cells. There are several important issues that need to be addressed, and foremost are the safety and efficacy of human iPS cells of different origins. Human iPS cells have been derived mostly from cells originating from mesoderm and in a few cases from ectoderm. So far, there has been no report of endoderm-derived human iPS cells, and this has prevented comprehensive comparative investigations of the quality of human iPS cells of different origins. Here we show for the first time reprogramming of human endoderm-derived cells (i.e., primary hepatocytes) to pluripotency. Hepatocyte-derived iPS cells appear indistinguishable from hES cells with respect to colony morphology, growth properties, expression of pluripotency-associated transcription factors and surface markers, and differentiation potential in embryoid body formation and teratoma assays. In addition, these cells are able to directly differentiate into definitive endoderm, hepatic progenitors, and mature hepatocytes.

Conclusion: The technology to develop endoderm-derived human iPS cell lines, together with other established cell lines, will provide a foundation for elucidating the mechanisms of cellular reprogramming and for studying the safety and efficacy of differentially originated human iPS cells for cell therapy. For the study of liver disease pathogenesis, this technology also provides a potentially more amenable system for generating liver disease-specific iPS cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925460PMC
http://dx.doi.org/10.1002/hep.23626DOI Listing

Publication Analysis

Top Keywords

ips cells
36
human ips
24
cells
16
endoderm-derived human
12
ips
11
human
9
induced pluripotent
8
pluripotent stem
8
stem cells
8
cells primary
8

Similar Publications

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

This paper introduces the current status of Seoul National University Hospital Dementia Brain Bank (SNUH-DBB), focusing on the concordance rate between clinical diagnoses and postmortem neuropathological diagnoses. We detail SNUH-DBB operations, including protocols for specimen handling, induced pluripotent stem cells (iPSC) and cerebral organoids establishment from postmortem dural fibroblasts, and adult neural progenitor cell cultures. We assessed clinical-neuropathological diagnostic concordance rate.

View Article and Find Full Text PDF

Protocol for live imaging of axonal transport in iPSC-derived iNeurons.

STAR Protoc

January 2025

Department of Neurology, University Medical Center Goettingen, 37077 Goettingen, Germany. Electronic address:

Studies of human induced pluripotent stem cell (iPSC)-derived neurons promise important insights into neurodegenerative diseases. Here, we present a protocol for live imaging of axonal transport in glutamatergic iPSC-derived neurons (iNeurons). We describe steps for the differentiation of iPSCs into iNeurons via PiggyBac-mediated neurogenin 2 (NGN2) delivery, iNeuron culture and transfection, and the acquisition and analysis of time-lapse images.

View Article and Find Full Text PDF

Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues.

Tissue Eng Regen Med

January 2025

Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China.

Background: The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.

Methods: We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.

View Article and Find Full Text PDF

Due to their self-renewal and differentiation capabilities, pluripotent stem cells hold immense potential for advancing our understanding of human disease and developing cell-based or pharmacological interventions. Realizing this potential, however, requires a thorough understanding of the basal cellular mechanisms which occur during differentiation. Lipids are critical molecules that define the morphological, biochemical, and functional role of cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!