N-acetylcysteine (NAC) is an effective antidote to treat acetaminophen (APAP)-induced acute liver failure (ALF). NAC is hepatoprotective and prevents the neurological complications of ALF, namely hepatic encephalopathy and brain edema. The protective effect of NAC and its mechanisms of action in ALF due to other toxins, however, are still controversial. In the present study, we investigated the effects of NAC in relation to liver pathology, hepatic and cerebral glutathione, plasma ammonia concentrations, progression of encephalopathy, cerebral edema, and plasma proinflammatory cytokines in mice with ALF resulting from azoxymethane (AOM) hepatotoxicity, a well characterized model of toxic liver injury. Male C57BL/6 mice were treated with AOM (100 microg/g; i.p.) or saline and sacrificed at coma stage of encephalopathy in parallel with AOM mice administered NAC (1.2 g/kg; i.p.). AOM administration led to hepatic damage, significant increase in plasma transaminase activity, decreased hepatic glutathione levels and brain GSH/GSSG ratios as well as increased expression of plasma proinflammatory cytokines. NAC treatment of AOM mice led to reduced hepatic damage and improvement in neurological function, normalization of brain and hepatic glutathione levels as well as selective attenuation in expression of plasma proinflammatory cytokines. These findings demonstrate that the beneficial effects of NAC in experimental non-APAP-induced ALF involves both antioxidant and anti-inflammatory mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11011-010-9201-2DOI Listing

Publication Analysis

Top Keywords

plasma proinflammatory
12
proinflammatory cytokines
12
acute liver
8
liver failure
8
antioxidant anti-inflammatory
8
anti-inflammatory mechanisms
8
effects nac
8
aom mice
8
hepatic damage
8
hepatic glutathione
8

Similar Publications

Blood clots are complex structures composed of blood cells and proteins held together by the structural framework provided by an insoluble fibrin network. Factor (F)XIII is a protransglutaminase essential for stabilizing the fibrin network. Activated FXIII(a) introduces novel covalent crosslinks within and between fibrin and other plasma and cellular proteins, and thereby promotes fibrin biochemical and mechanical integrity.

View Article and Find Full Text PDF

Lipopolysaccharides (LPS) are major components of Gram-negative bacteria. LPS not only induce endotoxemia and inflammation, but also contribute to various diseases. In experimental settings, LPS administration serves as a model for acute inflammatory responses.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is a common pathogenic situation that arises throughout all liver surgeries, including liver transplants. We aimed to compare the preventive effects of valsartan (VST) against valsartan + sacubitril (LCZ696) on hepatic injury caused by IRI. A total of thirty-six male Westar albino rats were split into six groups randomly: sham, IRI, VST + IRI, LCZ696 + IRI, VST, and LCZ696.

View Article and Find Full Text PDF

In modern war theaters, exposures to blast overpressures are one of the most common causes of brain injury. These pervasive events result in acute and chronic cerebrovascular degenerative processes. Using a rat model of blast-induced mild traumatic brain injury, we identified intramural periarterial hematomas as early primary acute lesions induced by blast exposures.

View Article and Find Full Text PDF

Previously, our metabolomic, transcriptomic, and genomic studies characterized the ceramide/sphingomyelin pathway as a therapeutic target in Alzheimer's disease, and we demonstrated that FTY720, a sphingosine-1-phospahate receptor modulator approved for treatment of multiple sclerosis, recovers synaptic plasticity and memory in APP/PS1 mice. To further investigate how FTY720 rescues the pathology, we performed metabolomic analysis in brain, plasma, and liver of trained APP/PS1 and wild-type mice. APP/PS1 mice showed area-specific brain disturbances in polyamines, phospholipids, and sphingolipids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!