Effect of the Pb(2+) lone electron pair in the structure and properties of the double perovskites Pb2Sc(Ti0.5Te0.5)O6 and Pb2Sc(Sc0.33Te0.66)O6: relaxor state due to intrinsic partial disorder.

Dalton Trans

Area de Química General e Inorgánica, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700, San Luis, Argentina.

Published: June 2010

We describe the preparation, the crystal structure refined from neutron powder diffraction (NPD) data, and study of the permittivity of two related double perovskites, Pb2Sc(Ti0.5Te0.5)O6 and Pb2Sc(Sc0.33Te0.66)O6. These compounds were synthesized by standard ceramic procedures; Rietveld refinements from room temperature NPD data show that the crystal structures are well defined in a cubic unit cell (space group Fm3m) with double parameter, a = 2a0 ≈ 8 Å. They contain a completely ordered array of ScO6 and (B,Te)O6 (B = Sc, Ti) octahedra sharing corners; the PbO12 polyhedra present an off-center displacement of the lead atoms along the [1 1 1] directions, due to the electrostatic repulsion between the Pb(2+) 6 s electron lone-pair and the Pb-O bonds of the cuboctahedron. Both compounds present a low temperature, highly dispersive maximum in permittivity, the position of which follows the Vogel-Fulcher relation with freezing temperatures of 156 and 99 K for Pb2Sc(Ti0.5Te0.5)O6 and Pb2Sc(Sc0.33Te0.66)O6, respectively, exhibiting a typical phenomenology of relaxors.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0dt00079eDOI Listing

Publication Analysis

Top Keywords

pb2scti05te05o6 pb2scsc033te066o6
12
double perovskites
8
perovskites pb2scti05te05o6
8
npd data
8
pb2+ lone
4
lone electron
4
electron pair
4
pair structure
4
structure properties
4
properties double
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!