Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: We previously reported a novel technology for the engineering of a capillary network using an optical lithographic technique. To apply this technology to the therapy of ischemic diseases, we tested human omental microvascular endothelial cells (HOMECs) as an autologous cell source and decellularized human amniotic membranes (DC-AMs) as a pathogen-free and low immunogenic transplantation scaffold.
Methods And Results: Human umbilical vein endothelial cells were aligned on a patterned glass substrate and formed a capillary structure when transferred onto an amniotic membrane (AM). In contrast, HOMECs were scattered and did not form a capillary structure on AMs. Treatment of HOMECs with sphingosine 1-phosphate (S1P) inhibited HOMEC migration and enabled HOMEC formation of a capillary structure on AMs. Using quantitative RT-PCR and Western blot analyses, we demonstrated that the main S1P receptor in HOMECs is S1P(2), which is lacking in human umbilical vein endothelial cells, and that inhibition of cell migration by S1P is mediated through an S1P(2)-Rho-Rho-associated kinase signaling pathway. Implantation of capillaries engineered on DC-AMs into a hindlimb ischemic nude mouse model significantly increased blood perfusion compared with controls.
Conclusions: A capillary network consisting of HOMECs on DC-AMs can be engineered ex vivo using printing technology and S1P treatment. This method for regeneration of a capillary network may have therapeutic potential for ischemic diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/ATVBAHA.109.198994 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!