A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Therapeutic angiogenesis by implantation of a capillary structure constituted of human adipose tissue microvascular endothelial cells. | LitMetric

AI Article Synopsis

  • * Researchers found that while HOMECs initially did not form capillaries on amniotic membranes, treatment with sphingosine 1-phosphate (S1P) allowed them to do so by inhibiting cell migration through a specific signaling pathway (S1P(2)-Rho-Rho-associated kinase).
  • * Implanting the engineered capillary networks into a mouse model showed significantly improved blood flow, indicating that this method could be a promising approach for regenerating blood vessels

Article Abstract

Objective: We previously reported a novel technology for the engineering of a capillary network using an optical lithographic technique. To apply this technology to the therapy of ischemic diseases, we tested human omental microvascular endothelial cells (HOMECs) as an autologous cell source and decellularized human amniotic membranes (DC-AMs) as a pathogen-free and low immunogenic transplantation scaffold.

Methods And Results: Human umbilical vein endothelial cells were aligned on a patterned glass substrate and formed a capillary structure when transferred onto an amniotic membrane (AM). In contrast, HOMECs were scattered and did not form a capillary structure on AMs. Treatment of HOMECs with sphingosine 1-phosphate (S1P) inhibited HOMEC migration and enabled HOMEC formation of a capillary structure on AMs. Using quantitative RT-PCR and Western blot analyses, we demonstrated that the main S1P receptor in HOMECs is S1P(2), which is lacking in human umbilical vein endothelial cells, and that inhibition of cell migration by S1P is mediated through an S1P(2)-Rho-Rho-associated kinase signaling pathway. Implantation of capillaries engineered on DC-AMs into a hindlimb ischemic nude mouse model significantly increased blood perfusion compared with controls.

Conclusions: A capillary network consisting of HOMECs on DC-AMs can be engineered ex vivo using printing technology and S1P treatment. This method for regeneration of a capillary network may have therapeutic potential for ischemic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.109.198994DOI Listing

Publication Analysis

Top Keywords

capillary structure
16
endothelial cells
16
capillary network
12
microvascular endothelial
8
ischemic diseases
8
human umbilical
8
umbilical vein
8
vein endothelial
8
structure ams
8
capillary
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!