Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The palmar pinch force estimation is highly relevant not only in biomechanical studies, the analysis of sports activities, and ergonomic design analyses but also in clinical applications such as rehabilitation, in which information about muscle forces influences the physician's decisions on diagnosis and treatment. Force transducers have been used for such purposes, but they are restricted to grasping points and inevitably interfere with the human haptic sense because fingers cannot directly touch the environmental surface. We propose an estimation method of the palmar pinch force using surface electromyography (SEMG). Three myoelectric sites on the skin were selected on the basis of anatomical considerations and a Fisher discriminant analysis (FDA), and SEMG at these sites yields suitable information for pinch force estimation. An artificial neural network (ANN) was implemented to map the SEMG to the force, and its structure was optimized to avoid both under- and over-fitting problems. The resulting network was tested using SEMG signals recorded from the selected myoelectric sites of ten subjects in real time. The training time for each subject was short (approximately 96s), and the estimation results were promising, with a normalized root mean squared error (NRMSE) of 0.081+/-0.023 and a correlation (CORR) of 0.968+/-0.017.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2010.04.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!