A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Real-time pinch force estimation by surface electromyography using an artificial neural network. | LitMetric

Real-time pinch force estimation by surface electromyography using an artificial neural network.

Med Eng Phys

Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea.

Published: June 2010

The palmar pinch force estimation is highly relevant not only in biomechanical studies, the analysis of sports activities, and ergonomic design analyses but also in clinical applications such as rehabilitation, in which information about muscle forces influences the physician's decisions on diagnosis and treatment. Force transducers have been used for such purposes, but they are restricted to grasping points and inevitably interfere with the human haptic sense because fingers cannot directly touch the environmental surface. We propose an estimation method of the palmar pinch force using surface electromyography (SEMG). Three myoelectric sites on the skin were selected on the basis of anatomical considerations and a Fisher discriminant analysis (FDA), and SEMG at these sites yields suitable information for pinch force estimation. An artificial neural network (ANN) was implemented to map the SEMG to the force, and its structure was optimized to avoid both under- and over-fitting problems. The resulting network was tested using SEMG signals recorded from the selected myoelectric sites of ten subjects in real time. The training time for each subject was short (approximately 96s), and the estimation results were promising, with a normalized root mean squared error (NRMSE) of 0.081+/-0.023 and a correlation (CORR) of 0.968+/-0.017.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2010.04.004DOI Listing

Publication Analysis

Top Keywords

pinch force
16
force estimation
12
surface electromyography
8
artificial neural
8
neural network
8
palmar pinch
8
myoelectric sites
8
force
6
estimation
5
real-time pinch
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!