A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Liposome combined porous beta-TCP scaffold: preparation, characterization, and anti-biofilm activity. | LitMetric

The objective of this study was to design a novel artificial bone scaffold for therapy and prevention of refractory bacterial infection. Porous beta-tricalcium phosphate (beta-TCP) scaffold was combined with liposomal gentamicin (GS) to form a novel complex drug carrier. The liposome combined beta-TCP scaffold (LCS) was characterized for its liposome binding rate, drug loading, and micromorphology. The anti-biofilm activity of LCS was evaluated by Staphylococcus aureus biofilm in vitro. The drug release from LCS was recognized as an initial high dose of liposomal GS released from the matrix and a further sustained release of free GS from the liposome, respectively, and it is an ideal release pattern for treatment and prevention of post-operative osteomyelitis. The release kinetics was influenced by variation of particle size of liposome. LCS displayed a potential anti-biofilm activity even in the lowest GS concentration (2.5 microg/mL), and the regrowth time was extended from 5.0 h to 9.5 h. At a higher dosage range, the highest anti-biofilm activity was achieved by LCS with liposomal particle size of 800 nm. In conclusion, the development of LCS showed a new pathway for controlled delivery of liposomal antibiotics for treatment of osteomyelitis caused by persistent bacterial infection.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10717541003762870DOI Listing

Publication Analysis

Top Keywords

anti-biofilm activity
16
beta-tcp scaffold
12
liposome combined
8
bacterial infection
8
particle size
8
lcs
6
liposome
5
combined porous
4
porous beta-tcp
4
scaffold
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!