Pattern formation from a silica colloidal suspension that is evaporating has been studied when a movement is imposed to the contact line. This article focuses on the stick-slip regime observed for very low contact line velocities. A capillary rise experiment has been specially designed for the observation and allows us to measure the pinning force that increases during the pinning of the contact line on the growing deposit. We report systematic measurements of this pinning force and derive scaling laws when the velocity of the contact line, the colloid concentration, and the evaporation rate are varied. Our analysis supports the idea that the pinning of the contact line results from a competition between the geometry of the growing deposit and the force due to gravity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la100547j | DOI Listing |
Sci Rep
December 2024
ENET Centre, VSB- Technical University of Ostrava, Ostrava, Czech Republic.
The present investigation provides an easy and affordable strategy for fabrication of functional ceramics BiNaTiO-SrFeO (BNT-SrF5) thick films on a flexible, inexpensive and electrically integrated substrate using electrophoretic deposition process (EPD). EPD is a widely accepted, environmentally friendly method for applying coatings from a colloidal suspension to conductive substrates. Lead-free ferroelectric BNT-SrF5 powder was synthesized by solid state method to fabricate bulk samples and thick films (30-160 μm) by EPD process.
View Article and Find Full Text PDFSci Rep
December 2024
Pharmacy Department, Hospices Civils de Lyon, Hôpital E. Herriot, Plateforme FRIPHARM, 69437, Lyon, France.
Phage therapy uses viruses (phages) against antibiotic resistance. Tailoring treatments to specific patient strains requires stocks of various highly concentrated purified phages. It, therefore, faces challenges: titration duration and specificity to a phage/bacteria couple; purification affecting stability; and highly concentrated suspensions tending to aggregate.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Dept. of Engineering, University of Campania Luigi Vanvitelli, Real Casa dell'Annunziata, via Roma 29, 81031 Aversa, CE, Italy. Electronic address:
Hypothesis: The porosity affects the rheological response of porous particle suspensions.
Experiments: Non-Brownian suspensions of porous particles immersed in a Newtonian Polyisobutene are investigated. Three different particles, with different porosity, pore structure and similar size, and non-porous irregular particles are used.
Int J Biol Macromol
December 2024
Composites and Nanocomposites Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, Rabat 10100, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, 43150 Ben Guerir, Morocco. Electronic address:
Chemosphere
December 2024
Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia. Electronic address:
The properties of soil colloids determine the interaction with nanoparticles, their behavior, and destiny in the soil environment including soil solutions. This study examines how several properties of soil colloids, including pH, phosphorus content, clay minerals, and iron oxyhydroxides, influence the interaction with zinc oxide nanoparticles (ZnO-nps). For the experimental setup, four different soils were selected from the temperate climate of central Europe, in Slovakia, exhibiting pH values ranging from 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!