An 11-year-old boy was struck in the left eye with a mechanical pencil in a projectile manner. Initial examination under the operating microscope revealed a presumed partial-thickness corneal injury with a retained 8-mm long segment of graphite lead. After removal of the graphite segment, a full-thickness hole in the cornea was revealed under the lead shaft. The proposed mechanism of injury and unique presentation was initial full-thickness penetration followed by lead shaft retraction (likely due to eye rubbing) and then corneal stromal reentry with stromal lamellar dissection and fixation. Prompt removal of the foreign body, corneal laceration repair, and early cataract extraction resulted in postoperative 20/40 uncorrected visual acuity. Mechanical lead pencil injuries represent a unique mechanism of penetrating trauma.

Download full-text PDF

Source
http://dx.doi.org/10.3928/15428877-20100325-11DOI Listing

Publication Analysis

Top Keywords

corneal injury
8
mechanical pencil
8
lead shaft
8
occult perforating
4
corneal
4
perforating corneal
4
injury mechanical
4
pencil graphite
4
graphite 11-year-old
4
11-year-old boy
4

Similar Publications

Nano-alkaline ion-excited NETs ablative eye drops promote ocular surface recovery.

J Control Release

December 2024

Department of Ophthalmology, Changzhou Third Peopls's Hospital, Changzhou Clinical College of Xuzhou Medical University, 300 Lanlin North road, Changzhou, Jiangsu 213000, China. Electronic address:

Neutrophil extracellular traps (NETs) promote neovascularization during the acute phase after ocular chemical injury, while the local inflammatory acidic environment delays post-injury repair. Currently, the mechanism of NETs promoting neovascularization has not been fully elucidated, and there is a lack of therapeutic strategies to effectively improve the local microenvironment for corneal repair. In this study, we validated the NETs-M2-angiogenic pathway after injury.

View Article and Find Full Text PDF

Oxidative stress mediates retinal damage after corneal alkali burn through the activation of the cGAS/STING pathway.

Exp Eye Res

December 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China. Electronic address:

Retinal damage accounts for irreversible vision loss following ocular alkali burn (OAB), but the underlying mechanisms remain largely unexplored. Herein, using an OAB mouse model, we examined the impact of oxidative stress (OS) in retinal damage and its molecular mechanism. Results revealed that OS in the retina was enhanced soon after alkali injury.

View Article and Find Full Text PDF

TIMP-2 Promotes Wound Healing by Suppressing Matrix Metalloproteinases and Inflammatory Cytokines in Corneal Epithelial Cells.

Am J Pathol

December 2024

Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA. Electronic address:

Tissue inhibitors of metalloproteinases (TIMPs) modulate extracellular matrix (ECM) remodeling for maintaining homeostasis and promoting cell migration and proliferation. Pathological conditions can alter TIMP homeostasis and aggravate disease progression. The roles of TIMPs have been studied in tissue-related disorders; however, their contributions to tissue repair during corneal injury are undefined.

View Article and Find Full Text PDF

SIRT1 Activation Suppresses Corneal Endothelial-Mesenchymal Transition via the TGF-β/Smad2/3 Pathway.

Curr Issues Mol Biol

December 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.

Endothelial-mesenchymal transition (EnMT) is the transversion of endothelial cells to mesenchymal cells under certain physiological or pathological conditions. When EnMT occurs in the corneal endothelium, corneal endothelial cells (CECs) lose their normal function and thus cannot maintain corneal clarity. Studies have shown that the mechanism of EnMT in CECs involves the transforming growth factor-β (TGF-β) signaling pathway, and one of the important inhibitors of the TGF-β/Smad2/3 pathway is sirtuin-1 (SIRT1).

View Article and Find Full Text PDF

Venom-spit ophthalmia: A novel envenomation of Monocled Cobra (Naja kaouthia).

Toxicon

December 2024

Venom Research Centre, Chittagong Medical College, Chattogram-4203, Bangladesh; Department of Zoology, University of Chittagong, Chattogram-4331, Bangladesh.

Handling venomous snakes poses a significant risk of envenomation. In the case of spitting cobras, additional precautions, like wearing face shields, are necessary to prevent ophthalmic envenomation. Although, the Monocled Cobra (Naja kaouthia) is not a true spitting cobra, however some spitting events has been reported from Northeastern India and Nepal but ocular envenomation is scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!