The 1.3 isoform of Na+-Ca 2+ exchanger expressed in guinea pig tracheal smooth muscle is less sensitive to KB-R7943.

J Physiol Biochem

Department of Physiology, Facultad de Medicina de la Universidad Autónoma de San Luis Potosí, Av. V. Carranza 2405, San Luis Potosí, San Luis Potosí 78210, Mexico.

Published: June 2010

The sodium-calcium exchanger (NCX) plays a major role in the regulation of cytosolic Ca(2+) in muscle cells. In this work, we performed force experiments to explore the role of NCX during contraction and relaxation of Cch-stimulated guinea pig tracheal smooth muscle strips. This tissue showed low sensitivity to NCX inhibitor KB-R7943 (IC50, 57 +/- 2 microM), although a complete relaxation was obtained by NCX inhibition at 100 microM. Interestingly, relaxation after washing the agonist was prolonged in the absence of external Na(+), whereas washing without Na(+) and in the presence of KB-R7943 resembled control conditions with physiological solution. Altogether, this suggests the reversal of NCX to a Ca(2+) influx mode by the manipulation on the Na(+) gradient, which can be inhibited by KB-R7943. In order to understand the low sensitivity to KB-R7943, we studied the molecular aspects of the NCX expressed in this tissue and found that the isoform of NCX expressed is 1.3, similar to that described in human tracheal smooth muscle. Sequencing revealed that amino acid 19 in exon B is phenylalanine, whereas in its human counterpart is leucine, and that the first amino acid after exon D is aspartate instead of glutamate in humans. Results herein presented are discussed in term of their possible functional implications in the exchanger activity and thus in airway physiology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13105-010-0016-8DOI Listing

Publication Analysis

Top Keywords

tracheal smooth
12
smooth muscle
12
guinea pig
8
pig tracheal
8
low sensitivity
8
ncx expressed
8
amino acid
8
acid exon
8
ncx
7
kb-r7943
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!