High power pulsed dynamic nuclear polarisation at 94 GHz.

Phys Chem Chem Phys

School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, UK.

Published: June 2010

In this communication we report initial results using high power pulsed techniques at 94 GHz to perform solid state Dynamic Nuclear Polarisation (DNP) on high volume samples. It is shown that excitation with short pulses, comparable to the pi/2 pulse length, at fast repetition rates can result in higher DNP enhancements relative to continuous wave (cw) excitation for the same average power. Peak enhancements are observed at an average power of only a few hundred mW delivered to the sample.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c002251aDOI Listing

Publication Analysis

Top Keywords

high power
8
power pulsed
8
dynamic nuclear
8
nuclear polarisation
8
average power
8
pulsed dynamic
4
polarisation ghz
4
ghz communication
4
communication report
4
report initial
4

Similar Publications

Motivation: Fine-mapping aims to prioritize causal variants underlying complex traits by accounting for the linkage disequilibrium of GWAS risk locus. The expanding resources of functional annotations serve as auxiliary evidence to improve the power of fine-mapping. However, existing fine-mapping methods tend to generate many false positive results when integrating a large number of annotations.

View Article and Find Full Text PDF

Transformative change is needed across the food system to improve health and environmental outcomes. As food, nutrition, environmental and health data are generated beyond human scale, there is an opportunity for technological tools to support multifactorial, integrated, scalable approaches to address the complexities of dietary behaviour change. Responsible technology could act as a mechanistic conduit between research, policy, industry and society, enabling timely, informed decision making and action by all stakeholders across the food system.

View Article and Find Full Text PDF

Intersection of rare pathogenic variants from TCGA in the All of Us Research Program v6.

HGG Adv

January 2025

Department of Biology, Brigham Young University, Provo, UT, 84061, USA; Simmons Center for Cancer Research, Brigham Young University, Provo, UT 84602, USA. Electronic address:

Using rare cancer predisposition alleles derived from The Cancer Genome Atlas (TCGA) and high cancer prevalence (14% of participants) in All of Us (version 6), we assessed the impact of these rare alleles on cancer occurrence in six broad groups of genetic similarity provided by All of Us: African/African American (AFR), Admixed American/Latino (AMR), East Asian (EAS), European (EUR), Middle Eastern (MID), or South Asian (SAS). We observed that germline susceptibility to cancer consistently replicates in EUR-like participants but less so in other participants. We found that All of Us participants from the EUR (p = 1.

View Article and Find Full Text PDF

Hydropower Station diversion tunnel layered excavation deformation mechanism under high crustal stress.

Sci Rep

January 2025

Power China Guiyang Engineering Corporation Limited, Guiyang, China, 550081, Guizhou.

Aiming at the crucial engineering challenge of the ambiguous excavation deformation mechanism of hard and brittle surrounding rock under high geos-tress conditions, with the right bank diversion tunnel at the dam site of the hydropower station as the research object, the deformation and failure characteristics of the surrounding rock and their formation mechanisms during the layered excavation of the diversion tunnel were investigated. The research findings show: (1) The main factors influencing the deformation of the diversion tunnel's surrounding rock are the high ground stress environment, the degree of fracture development in the rock mass, and the effectiveness of the support system. (2) Following the excavation of the first layer, extensive shallow damage predominates, with damaged blocks primarily exhibiting sheet-like and plate-like forms.

View Article and Find Full Text PDF

In the recent era, Lithium ion batteries plays a significant role in EV industry due to their high specific energy density, power density, low self-discharge rate, and prolonged lifespan. Modeling the battery precisely and estimating its State of Charge with great precision is essential to improve the performance of the lithium-ion batteries. Though numerous methods has been proposed for estimating the SOC, accurate estimation approach is not proposed yet since all these approaches consider the discrete-time dynamics of the battery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!