A mathematical model describing glucose-dependent pH swelling and insulin release is developed for pH-sensitive cationic hydrogels in which glucose oxidase and catalase have been immobilized and insulin imbibed. Glucose based swelling and insulin release are simulated for intravenously injected particles at various design conditions. The effects of particle size, the number of injected particles, insulin loading, enzyme loading, monomer functional group loading and pK(a), and hydrogel crosslinking ratio on insulin release and glucose sensitivity are investigated in order to optimally design the device for use. Increased insulin infusion is shown to result from increasing the number of circulating gels, increasing the collapsed particle size, or by decreasing the crosslinking ratio of the system. Release duration is shown to be dependent only upon the particle size and the achievable diffusion coefficient of the system. Glucose sensitivity, as measured by gluconic acid production and by the system pH, are functions of glucose oxidase loading and the concentration and pK(a) of the monomer used in the hydrogel.The necessarily submicron particle size results in very rapid device insulin depletion. When the device is designed without considering constraints, the resulting release profile resembles that of an on/off switching mechanism. Future work will focus on simulations of swelling and release when the device is implanted in an alternative administration site.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860336 | PMC |
http://dx.doi.org/10.1021/ie070957b | DOI Listing |
Langmuir
January 2025
Research Center for Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
The mechanism of the emulsion polymerization of styrene to polystyrene nanoparticles (PSNPs) remains a subject of debate. Herein, a series of reaction parameters with different surfactant concentrations, monomer contents, temperatures, and equilibration times were investigated to understand the formation mechanism of PSNPs, which demonstrate a correlation between the properties of PSNPs and the mesostructure of the premix. Cooling the model systems with self-emulsifying nanodroplets (SENDs) in the early reaction stages resulted in the hollow polystyrene spheres (H-PSSs), ruptured PSNPs, and dandelion-like PSNPs, further indicating that the oil nanodroplets are the key sites for the formation of PSNPs.
View Article and Find Full Text PDFPlant Physiol
January 2025
State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
In plants, cytoskeletal proteins assemble into dynamic polymers that play numerous roles in diverse fundamental cellular processes, including endocytosis, vesicle trafficking, and the spatial distribution of organelles and protein complexes. Plant elicitor peptides (Peps) are damage/danger-associated molecular patterns (DAMPs) that are perceived by the receptor-like kinases PEP RECEPTOR 1 (PEPR1) and PEPR2 to enhance innate immunity and inhibit root growth in Arabidopsis (Arabidopsis thaliana). To date, however, there is little evidence that the actin cytoskeleton of the host cell participates in DAMP-induced innate immunity.
View Article and Find Full Text PDFPeerJ
January 2025
Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico.
The average annual water availability worldwide is approximately 1,386 trillion cubic hectometers (hm), of which 97.5% is saltwater and only 2.5% is freshwater.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA.
Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America.
The improved growth performance of calves at weaning results from an effective pre-weaning feeding strategy. The type and pasteurization process of liquid feed are among the most variable feeding practices affecting calves' growth and health. In previous studies that compared waste milk (WM) vs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!