Fluid balance management in pediatric critically ill patients is a challenging task, since fluid overload (FO) in the pediatric ICU is considered a trigger of multiple organ dysfunction. In particular, the smallest patients with acute kidney injury are at highest risk to develop severe interstitial edema, capillary leak syndrome and FO. Several studies previously showed a statistical difference in the percentage of FO among children with severe renal dysfunction requiring renal replacement therapy. For this reason, in children priority indication is currently given to the correction of water overload. If this concept is so important in the critically ill small children, where capillary leak syndrome is a dramatic manifestation, it has probably been underestimated in critically ill adults and only recently re-evaluated. The present review will shortly describe nutrition strategies in critically ill children, it will discuss dosages, benefits and drawbacks of diuretic therapy, and alternative diuretic/nephroprotective drugs currently proposed in the pediatric setting. Finally, specific modalities of pediatric extracorporeal fluid removal will be presented. Fluid management, furthermore, is not only the discipline of removing water: it should also address the way to optimize fluid infusions and, above all, one of the most important fluids infused to all ICU patients with renal dysfunction: parenteral nutrition.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000313733DOI Listing

Publication Analysis

Top Keywords

critically ill
16
fluid management
8
management pediatric
8
capillary leak
8
leak syndrome
8
renal dysfunction
8
fluid
6
pediatric
5
pediatric intensive
4
intensive care
4

Similar Publications

Background: Infant alertness and neurologic changes can reflect life-threatening pathology but are assessed by physical exam, which can be intermittent and subjective. Reliable, continuous methods are needed. We hypothesized that our computer vision method to track movement, pose artificial intelligence (AI), could predict neurologic changes in the neonatal intensive care unit (NICU).

View Article and Find Full Text PDF

Digital health interventions in adult intensive care and recovery after critical illness to promote survivorship care.

J Intensive Care Soc

January 2025

Department of Physiotherapy, Faculty of Medicine, Dentistry and Health Sciences, School of Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.

Digital health refers to the field of using and developing technology to improve health outcomes. Digital health and digital health interventions (DHIs) within the area of intensive care and critical illness survivorship are rapidly evolving. Digital health interventions refer to technologies in clinical interventional format.

View Article and Find Full Text PDF

Introduction The pediatric intensive care unit (PICU) is a specialized area for treating critically ill infants and children. However, some of these children may experience poor outcomes, including death. However, it is necessary to predict the prognosis for critically ill patients as early as possible to commence triage as well as an early and effective intervention to prevent mortality.

View Article and Find Full Text PDF

Extension of an ICU-based noninvasive model to predict latent shock in the emergency department: an exploratory study.

Front Cardiovasc Med

December 2024

Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.

Background: Artificial intelligence (AI) has been widely adopted for the prediction of latent shock occurrence in critically ill patients in intensive care units (ICUs). However, the usefulness of an ICU-based model to predict latent shock risk in an emergency department (ED) setting remains unclear. This study aimed to develop an AI model to predict latent shock risk in patients admitted to EDs.

View Article and Find Full Text PDF

Introduction: The Sequential Organ Failure Assessment (SOFA) score is a widely utilized clinical tool for evaluating the severity of organ failure in critically ill patients and assessing their condition and prognosis in the intensive care unit (ICU). Research has demonstrated that higher SOFA scores are associated with poorer outcomes in these patients. However, the predictive value of the SOFA score for acute kidney injury (AKI), a common complication of diabetic ketoacidosis (DKA), remains uncertain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!