Coronavirus nonstructural proteins 1 to 3 are processed by one or two papain-like proteases (PLP1 and PLP2) at specific cleavage sites (CS1 to -3). Murine hepatitis virus (MHV) PLP2 and orthologs recognize and cleave at a position following a p4-Leu-X-Gly-Gly-p1 tetrapeptide, but it is unknown whether these residues are sufficient to result in processing by PLP2 at sites normally cleaved by PLP1. We demonstrate that exchange of CS1 and/or CS2 with the CS3 p4-p1 amino acids in engineered MHV mutants switches specificity from PLP1 to PLP2 at CS2, but not at CS1, and results in altered protein processing and virus replication. Thus, the p4-p1 residues are necessary for PLP2 processing but require a specific protein or cleavage site context for optimal PLP recognition and cleavage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903247PMC
http://dx.doi.org/10.1128/JVI.00752-10DOI Listing

Publication Analysis

Top Keywords

cleavage sites
8
plp1 plp2
8
plp2
5
exchange coronavirus
4
coronavirus replicase
4
replicase polyprotein
4
cleavage
4
polyprotein cleavage
4
sites alters
4
alters protease
4

Similar Publications

The cardiopulmonary nematode Angiostrongylus vasorum can cause severe disease in dogs, including coagulopathies manifesting with bleeding. We analysed A. vasorum excretory/secretory protein (ESP)-treated dog plasma and serum by N-terminome analysis using Terminal Amine Isotopic Labelling of Substrates (TAILS) to identify cleaved host substrates.

View Article and Find Full Text PDF

Glucanases are widely applied in industrial applications such as brewing, biomass conversion, food, and animal feed. Glucanases catalyze the hydrolysis of glucan to produce the sugar hemiacetal through hydrolytic cleavage of glycosidic bonds. Current study aimed to investigate structural insights of a glucanase from Clostridium perfringens through blind molecular docking, site-specific molecular docking, molecular dynamics (MD) simulation, and binding energy calculation.

View Article and Find Full Text PDF

Changes in protein levels of the mammalian cleavage factor, CFIm25, play a role in regulating pathological processes including neural dysfunction, fibrosis, and tumorigenesis. However, despite these effects, little is known about how CFIm25 (NUDT21) expression is regulated at the RNA level. A potential regulator of NUDT21 mRNA are small non-coding microRNAs (miRNAs).

View Article and Find Full Text PDF

HIV OctaScanner: A Machine Learning Approach to Unveil Proteolytic Cleavage Dynamics in HIV-1 Protease Substrates.

J Chem Inf Model

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.

The rise of resistance to antiretroviral drugs due to mutations in human immunodeficiency virus-1 (HIV-1) protease is a major obstacle to effective treatment. These mutations alter the drug-binding pocket of the protease and reduce the drug efficacy by disrupting interactions with inhibitors. Traditional methods, such as biochemical assays and structural biology, are crucial for studying enzyme function but are time-consuming and labor-intensive.

View Article and Find Full Text PDF

Long-term blood glucose control via glucose-activated transcriptional regulation of insulin analogue in type 1 diabetes mice.

Diabetes Obes Metab

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China.

Aim: To achieve glucose-activated transcriptional regulation of insulin analogue in skeletal muscle of T1D mice, thereby controlling blood glucose levels and preventing or mitigating diabetes-related complications.

Materials And Methods: We developed the GANIT (Glucose-Activated NFAT-regulated INSA-F Transcription) system, an innovative platform building upon the previously established intramuscular plasmid DNA (pDNA) delivery and expression system. In the GANIT system, skeletal muscle cells are genetically engineered to endogenously produce the insulin analogue INSA-F (Insulin Aspart with Furin cleavage sites).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!