The evaluation and assessment of monitoring data generated over a period of 1983-2007 (25 years) of a nuclear facility is presented. Time trends of particulate radioactivity, correlation between (137)Cs in discharge canal seawater and station discharged activity and correlation of (137)Cs, (60)Co, and (131)I in marine species such as sponge and Nerita (gastropod) and corresponding discharged activity are discussed. The concentration of (137)Cs and (131)I in seawater versus biota are discussed. A good correlation between (137)Cs in seawater and (137)Cs in liquid waste discharged was observed (R(2) = 0.8, p < 0.001). Similarly, correlation was good for Nerita and discharged concentration of (137)Cs, (131)I and (60)Co (R(2) = 0.55-0.73 and p < 0.001). The measurements over the years indicated that there is no accumulation of radionuclides in either the terrestrial or aquatic environments. The mean (137)Cs decreased from the pre-operational levels: 7.0-3.6 Bq kg(-1) in soil, 0.91-0.016 Bq L(-1) in milk and 0.28-0.036 Bq kg(-1) in vegetation. Similarly, the mean (90)Sr in these matrixes decreased from 3.9 to 0.26 Bq kg(-1); 0.37-0.011 Bq L(-1) and 0.34-0.022 Bq kg(-1) respectively. Cesium-137 of about 700 microBq m(-3) was measured in the air filter disks during 1986 and there was a decrease of three orders of magnitude in concentration over the 25 years. The evaluation of environmental data indicated that the radionuclide concentrations and potential impacts, in terms of effective dose to the members of public, have significantly reduced since 1969.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2010.03.012 | DOI Listing |
J Environ Radioact
January 2025
Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, 920-1192, Kanazawa, Ishikawa, Japan.
Radionuclides, including I, were released into the atmosphere by the Fukushima nuclear power plant accident. We measured the dissolved I concentration in 11 rivers in eastern Fukushima from 2016 to 2020 to clarify the I concentration level in river water under base-flow conditions. During the study period, the maximum I concentration in the river water was 1.
View Article and Find Full Text PDFJ Environ Radioact
January 2025
Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC, USA.
The primary aim of this study was to quantify patterns in the distribution of Sr and Cs activity in pine (Pinus sylvestris L.: 18 sites) and birch (Betula pendula Roth.: 2 sites) forests within the Chornobyl exclusion zone, 30 years after the Chornobyl nuclear power plant (NPP) accident (1986).
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China. Electronic address:
The temporal variation and transport of Cs in the Beibu Gulf (BG) are still poorly understood. Here we measured Cs concentrations in the BG water column and surface sediments during 2022. We found that Cs in the BG water column was controlled by the movement and mixing of local water masses.
View Article and Find Full Text PDFProbl Radiac Med Radiobiol
December 2024
National University of Physical Education and Sport of Ukraine, 1 Fizkultury Str., Kyiv, 03150, Ukraine.
Objective: to assess the impact of stressful life events occuring with the period of restrictive measures introductionconnected to the COVID-19 pandemic and during the full-scale Russian aggression, on the anthropometric indicators and body composition of children aged 10-17 years.
Materials And Methods: The research group consisted of 56 boys and 70 girls aged 10-17 years who lived in radioactively contaminated areas of Zhytomyr, Rivne, and Kyiv regions with a soil contamination density of 137Cs from 18 kBq/m2 to 235 kBq/m2. The impact of stressful factors was assessed using the stress perception scale (PSS-10).
Chemosphere
November 2024
Department of Mass Spectrometry, Institute of Nuclear Physics Polish Academy of Sciences, Ul. Radzikowskiego 152, 31-342 Kraków, Poland.
Cryoconite, granule-shaped debris found on the surface of glaciers, is known for trapping substantial quantities of pollutants such as radioactive nuclides and heavy metals. This study investigates contamination levels, sources and spatial variability of natural and artificial radioisotopes in cryoconite from Mittivakkat Gletsjer in southeast Greenland by determining the activity and atomic ratios of selected radionuclides. The maximum activity concentrations of artificial radioisotopes were 1129 ± 34 Bq kg for Cs, 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!