We sought to reduce tumor hypoxia by topical application of a vasodilator, benzyl nicotinate (BN), and investigated its effect on the growth of tumors irradiated at times when tumor pO(2) increased. EPR oximetry was used to follow the changes in the tissue pO(2) of subcutaneous radiation-induced fibrosarcoma (RIF-1) tumors during topical applications of 1.25-8% BN formulations for 5 consecutive days. The RIF-1 tumors were hypoxic with a tissue pO(2) of 4.6-7.0 mmHg. A significant increase in tumor pO(2) occurred 10-30 min after BN application. The formulation with the minimal BN concentration that produced a significant increase in tumor pO(2) was used for the radiation study. The tumors were irradiated (4 Gy x 5) at the time of the maximum increase in pO(2) observed with the 2.5% BN formulation. The tumors with an increase in pO(2) of greater than 2 mmHg from the baseline after application of BN on day 1 had a significant growth inhibition compared to the tumors with an increase in pO(2) of less than 2 mmHg. The results indicate that the irradiation of tumors at the time of an increase in pO(2) after the topical application of the 2.5% BN formulation led to a significant growth inhibition. EPR oximetry provided dynamic information on the changes in tumor pO(2), which could be used to identify responders and non-responders and schedule therapy during the experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877920 | PMC |
http://dx.doi.org/10.1667/RR1947.1 | DOI Listing |
Magn Reson Med
January 2025
Oxygen Measurement Core, O2M Technologies, LLC, Chicago, Illinois, USA.
Purpose: Solid crystalline spin probes, such as lithium phthalocyanine (LiPc) and lithium octa-n-butoxynaphthalocyanine (LiNc-BuO), allow repeated oxygen measurement using electron paramagnetic resonance (EPR). Due to their short relaxation times, their use for pulse EPR oxygen imaging is limited. In this study, we developed and tested a new class of solid composite spin probes that modified the relaxation rates R and R of LiPc or LiNc-BuO probes, which allowed pO measurements in the full dynamic (0-760 torr) range.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
The tumor microenvironment characterized by heterogeneously organized vasculatures causes intra-tumoral heterogeneity of oxygen partial pressurepat the cellular level, which cannot be measured by current imaging techniques. The intra-tumoral cellularpheterogeneity may lead to a reduction of therapeutic effects of radiation. The purpose of this study was to investigate the effects of the heterogeneity on biological effectiveness of H-, He-, C-, O-, and Ne-ion beams for different oxygenation levels, prescribed dose levels, and cell types.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.
Photodynamic therapy (PDT) holds great potential in cancer treatment, leveraging photosensitizers (PSs) to deliver targeted therapy. Fluorination can optimize the physicochemical and biological properties of PSs for better PDT performance. Here, we report some high-performance multifunctional PSs specifically designed for cancer PDT by fluorinating aza-BODIPY with perfluoro--butoxymethyl (PFBM) groups.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine- National Research Institute, PL-04-141, Warsaw, Poland.
Hypoxia, a condition of oxygen tension lower than physiological level, plays a crucial role in shaping the tumor microenvironment and modulates distinct cell populations activity. The tumor suppressor PTEN regulates angiogenesis, a process involving endothelial cells (ECs). Pathological in tumors, it is crucial for growth.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!