In vitro cytotoxic evaluation of metallic and magnetic DNA-templated nanostructures.

ACS Appl Mater Interfaces

Weldon School of Biomedical Engineering and Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA.

Published: May 2010

We evaluate the potential in vitro cytotoxicity that may arise from metallic and magnetic DNA-templated nanostructures. By using a fluorescence-based assay, the viability of cells was examined after treatment with DNA-templated nanostructures. Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify the amount of nanoparticles internalized by the cells. Cell uptake of DNA-templated nanostructures was enhanced after encapsulating the nanostructure with layers of polyelectrolytes (PSS and PAH) and targeting ligands. Transmission electron microscope (TEM) images provided evidence that the nanostructures were localized in vesicles in the cytoplasm of the cells. The results from this study suggest that gold, iron oxide, and cobalt iron oxide DNA-templated nanostructures do not induce in vitro toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am1000568DOI Listing

Publication Analysis

Top Keywords

dna-templated nanostructures
20
metallic magnetic
8
magnetic dna-templated
8
iron oxide
8
nanostructures
6
dna-templated
5
vitro cytotoxic
4
cytotoxic evaluation
4
evaluation metallic
4
nanostructures evaluate
4

Similar Publications

Multifunctional DNA-Metal Nanohybrids Derived From DNA-MgPPi Microhybrids by Rolling Circle Amplification.

Small Methods

January 2025

Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.

Rolling circle amplification (RCA)-derived ultra-long DNA is highly attractive and versatile because of its diverse functionalities conferred by repeated DNA nanostructures. However, magnesium pyrophosphate (MgPPi) crystals, as byproducts of RCA, electrostatically interact with the DNA to form DNA microhybrids and hamper its broad bioapplications, as its large size is unfavorable for cellular uptake and decreases the density of functional DNA nanostructures. In this study, finely tuned synthesis strategies are developed to condense the microhybrids and replace non-functional MgPPi crystals with various functional metal nanostructures by reducing metal ions.

View Article and Find Full Text PDF

A fluorescence and colorimetric dual-mode aptasensor for kanamycin detection.

Biosens Bioelectron

January 2025

Department of Chemistry, University of Otago, Dunedin, 9016, New Zealand. Electronic address:

This study presents the development of a dual-mode aptasensor for the sensitive detection of kanamycin (KAN), utilizing both fluorescence and colorimetric signals. The aptasensor was constructed using amino-functionalized silica nanoparticles (SiO) combined with copper nanoclusters (CuNCs) and DNA-templated silver nanoclusters (DNA-AgNCs). Encapsulating CuNCs within SiO (CuNCs@SiO) enhanced their stability by shielding them from environmental interference, while maintaining their bright blue fluorescence as a reference signal.

View Article and Find Full Text PDF

DNA-templated nanosheets for enhanced chemodynamic therapy and gene therapy to inhibit tumor recurrence and metastasis.

Int J Pharm

December 2024

College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China. Electronic address:

Recurrence and metastasis stand as the primary contributors to mortality among patients with triple-negative breast cancer post-surgery, presenting a formidable clinical obstacle. Chemodynamic therapy (CDT), leveraging metal-ion-mediated Fenton-like reactions within the tumor microenvironment (TME), emerges as a promising avenue for addressing cancer metastasis. Despite recent progress, challenges such as tumor cell antioxidant defenses and epithelial-mesenchymal transition (EMT) impede the efficacy of CDT.

View Article and Find Full Text PDF

DNAzyme-mediated fluorescence signal variation of DNA-Ag nanoclusters and construction of an aptasensor for ATP.

Anal Methods

November 2024

School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.

DNA-templated silver nanoclusters (DNA-AgNCs) are novel nanomaterials with unique fluorescence characteristics. DNAzyme is a functional oligonucleotide that can catalyze the disruption of nucleic acid substrates. In this research, the effect of DNAzyme digestion on the fluorescence property of DNA-AgNCs was explored for the first time.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) in dermal interstitial fluid (ISF) have recently been recognized as clinically promising biomarkers for the diagnosis and prognosis of cancer. However, the detection poses significant challenges, primarily due to the low abundance of miRNAs and the limitations of current sampling techniques. To address this issue, we develop novel porous microneedles (PMNs) array-based sensor composed of poly(vinyl alcohol) porous hydrogel and DNA-templated silver nanoclusters (AgNCs) to facilitate the enrichment and highly sensitive detection of ISF miRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!