Reinforcing abiotic and biotic time constraints facilitate the broad distribution of a generalist with fixed traits.

Ecology

Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado 81224, USA.

Published: March 2010

Many species are habitat specialists along environmental gradients as a result of contrasting selection pressures, but others maintain broad distributions along such gradients. Phenotypic plasticity explains the persistence of some generalists, but not the broad distributions of species with fixed traits. We combined comparative and experimental data to investigate the role of multiple selection pressures on the distribution of a cased caddisfly (Asynarchus nigriculus) across a pond permanence gradient in the Mexican Cut Nature Preserve, Elk Mountains, Colorado, USA. Rapid development in this species facilitates the exploitation of short-duration vernal pools. Comparative data document that slowly growing individuals die from desiccation, suggesting an ongoing selection for rapid development. Surprisingly, development is as fast or faster in long-duration, autumnal ponds where emergence occurs long before drying, and overlaps with the appearance of beetle (Dytiscus) predators. In field experiments we found that the last two instars of beetle larvae pose a significant mortality threat to Asynarchus, but that threat declines after caddisfly pupation. In natural populations, the caddisflies pupate and emerge just as large beetle instars appear in the ponds. Experimental manipulation of caddisfly size suggests that rapid development in autumnal ponds will both facilitate intraguild predation on other caddisflies and reduce Asynarchus cannibalism. Both types of caddisfly interactions should have a positive feedback effect on rapid development via a protein supplement to their detrital diet. All of these biotic time constraints should select for rapid Asynarchus development in autumnal habitats, despite relaxed drying time constraints. Asynarchus did not display flexible antipredator responses to beetles (no changes in activity rates, morphology, or development), suggesting that the traits that lead to rapid development are fixed, regardless of habitat type and presence of predators. We propose that different, but convergent, selection pressures across different habitat types have led to fixed specialized traits that enable a broad distribution along this environmental gradient. These selection pressures are dependent on the relative phenologies of interacting species and appear to trump the trade-offs between other types of physical and biotic constraints across habitats.

Download full-text PDF

Source
http://dx.doi.org/10.1890/08-1871.1DOI Listing

Publication Analysis

Top Keywords

rapid development
20
selection pressures
16
time constraints
12
biotic time
8
broad distribution
8
fixed traits
8
broad distributions
8
development
8
autumnal ponds
8
development autumnal
8

Similar Publications

scHNTL: single-cell RNA-seq data clustering augmented by high-order neighbors and triplet loss.

Bioinformatics

January 2025

School of Computing and Artificial Intelligence, Southwest Jiaotong University, Sichuan 611756, China.

Motivation: The rapid development of single-cell RNA sequencing (scRNA-seq) has significantly advanced biomedical research. Clustering analysis, crucial for scRNA-seq data, faces challenges including data sparsity, high dimensionality, and variable gene expressions. Better low-dimensional embeddings for these complex data should maintain intrinsic information while making similar data close and dissimilar data distant.

View Article and Find Full Text PDF

In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.

View Article and Find Full Text PDF

Screening and monitoring of diabetes or dyslipidemia frequently involves a multi-step process requiring patients to obtain test requisitions from their primary care physician (PCP), followed by a laboratory visit and re-consultation. Point-of-care testing (POCT) for hemoglobin A (HbA) and lipid panel can streamline the patient care pathway. This study assessed the budget impact of introducing Afinion™ 2 POCT (Abbott Rapid Diagnostics) from the Canadian and Italian societal perspectives.

View Article and Find Full Text PDF

Bioinspired Antiswelling Hydrogel Sensors with High Strength and Rapid Self-Recovery for Underwater Information Transmission.

ACS Appl Mater Interfaces

January 2025

School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

Hydrogel-based sensors typically demonstrate conspicuous swelling behavior in aqueous environments, which can severely compromise the mechanical integrity and distort sensing signals, thereby considerably constraining their widespread applicability. Drawing inspiration from the multilevel heterogeneous structures in biological tissues, an antiswelling hydrogel sensor endowed with high strength, rapid self-recovery, and low swelling ratio was fabricated through a water-induced phase separation and coordination cross-linking strategy. A dense heterogeneous architecture was developed by the integration of "rigid" quadridentate carboxyl-Zr coordination bonds and "soft" hydrophobic unit-rich regions featuring π-π stacking and cation-π interactions into the hydrogels.

View Article and Find Full Text PDF

mSphere of Influence: High-throughput screens to rapidly assign function to microbial genes.

mSphere

January 2025

Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA.

Lori Huberman works in the field of fungal genetics, with an emphasis on investigating the genetic mechanisms fungi use to sense and respond to the nutrients and toxins in their environment. In this mSphere of Influence article, she reflects on how "Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons" by K. M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!