Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of the work is to provide a fully automatic method of segmenting vertebrae in spinal radiographs. This is of clinical relevance to the diagnosis of osteoporosis by vertebral fracture assessment, and to grading incident fractures in clinical trials. We use a parts based model of small vertebral patches (e.g., corners). Many potential candidates are found in a global search using multi-resolution normalised correlation. The ambiguity in the possible solution is resolved by applying a graphical model of the connections between parts, and applying geometric constraints. The resulting graph optimisation problem is solved using loopy belief propagation. The minimum cost solution is used to initialize a second phase of active appearance model search. The method is applied to a clinical data set of computed radiography images of lumbar spines. The accuracy of this fully automatic method is assessed by comparing the results to a gold standard of manual annotation by expert radiologists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-642-04271-3_123 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!