We consider the problem of segmenting 3D images that contain a dense collection of spatially correlated objects, such as fluorescent labeled cells in tissue. Our approach involves an initial modeling phase followed by a data-fitting segmentation phase. In the first phase, cell shape (membrane bound) is modeled implicitly using a parametric distribution of correlation function estimates. The nucleus is modeled for its shape as well as image intensity distribution inspired from the physics of its image formation. In the second phase, we solve the segmentation problem using a variational level-set strategy with coupled active contours to minimize a novel energy functional. We demonstrate the utility of our approach on multispectral fluorescence microscopy images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3115640 | PMC |
http://dx.doi.org/10.1007/978-3-642-04271-3_78 | DOI Listing |
Plants (Basel)
January 2025
Key Laboratory of Efficient Forage Production Mode, Ministry of Agriculture and Rural Affair, College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China.
Grassland degradation is a serious ecological issue in the farming-pastoral ecotone of northern China. Utilizing native grasses for the restoration of degraded grasslands is an effective technological approach. is a superior indigenous grass species for grassland ecological restoration in northern China.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Optical Engineering, Utsunomiya University, 7-2-1 Yoto, Utsunomiya 321-8585, Japan.
We describe the various steps of a gas imaging algorithm developed for detecting, identifying, and quantifying gas leaks using data from a snapshot infrared spectral imager. The spectral video stream delivered by the hardware allows the system to combine spatial, spectral, and temporal correlations into the gas detection algorithm, which significantly improves its measurement sensitivity in comparison to non-spectral video, and also in comparison to scanning spectral imaging. After describing the special calibration needs of the hardware, we show how to regularize the gas detection/identification for optimal performance, provide example SNR spectral images, and discuss the effects of humidity and absorption nonlinearity on detection and quantification.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Civil Engineering and Engineering Management, National Quemoy University, Kinmen 89250, Taiwan.
Ground-based LiDAR technology has been widely applied in various fields for acquiring 3D point cloud data, including spatial coordinates, digital color information, and laser reflectance intensities (I-values). These datasets preserve the digital information of scanned objects, supporting value-added applications. However, raw point cloud data visually represent spatial features but lack attribute information, posing challenges for automated object classification and effective management.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Environmental Remote Sensing and Geoinformatics, Trier University, Universitätsring 15, 54296 Trier, Germany.
Assessing vines' vigour is essential for vineyard management and automatization of viticulture machines, including shaking adjustments of berry harvesters during grape harvest or leaf pruning applications. To address these problems, based on a standardized growth class assessment, labeled ground truth data of precisely located grapevines were predicted with specifically selected Machine Learning (ML) classifiers (Random Forest Classifier (RFC), Support Vector Machines (SVM)), utilizing multispectral UAV (Unmanned Aerial Vehicle) sensor data. The input features for ML model training comprise spectral, structural, and texture feature types generated from multispectral orthomosaics (spectral features), Digital Terrain and Surface Models (DTM/DSM- structural features), and Gray-Level Co-occurrence Matrix (GLCM) calculations (texture features).
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China.
Precipitable water vapor (PWV) is an important indicator to characterize the spatial and temporal variability of water vapor. A high spatial and temporal resolution of atmospheric precipitable water can be obtained using ground-based GNSS, but its inversion accuracy is usually limited by the weighted mean temperature, Tm. For this reason, based on the data of 17 ground-based GNSS stations and water vapor reanalysis products over 2 years in the Hong Kong region, a new model for water vapor inversion without the Tm parameter is established by deep learning in this paper, the research results showed that, compared with the PWV information calculated by the traditional model using Tm parameter, the accuracy of the PWV retrieved by the new model proposed in this paper is higher, and its accuracy index parameters BIAS, MAE, and RMSE are improved by 38% on average.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!