Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The automatic analysis of longitudinal changes between Diffusion Tensor Imaging (DTI) acquisitions is a promising tool for monitoring disease evolution. However, few works address this issue and existing methods are generally limited to the detection of changes between scalar images characterizing diffusion properties, such as Fractional Anisotropy or Mean Diffusivity, while richer information can be exploited from the whole set of Apparent Diffusion Coefficient (ADC) images that can be derived from a DTI acquisition. In this paper, we present a general framework for detecting changes between two sets of ADC images and we investigate the performance of four statistical tests. Results are presented on both simulated and real data in the context of the follow-up of multiple sclerosis lesion evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-642-04268-3_118 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!