A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Slipping objects in image registration: improved motion field estimation with direction-dependent regularization. | LitMetric

The computation of accurate motion fields is a crucial aspect in 4D medical imaging. It is usually done using a non-linear registration without further modeling of physiological motion properties. However, a globally homogeneous smoothing (regularization) of the motion field during the registration process can contradict the characteristics of motion dynamics. This is particularly the case when two organs slip along each other which leads to discontinuities in the motion field. In this paper, we present a diffusion-based model for incorporating physiological knowledge in image registration. By decoupling normal- and tangential-directed smoothing, we are able to estimate slipping motion at the organ borders while ensuring smooth motion fields in the inside and preventing gaps to arise in the field. We evaluate our model focusing on the estimation of respiratory lung motion. By accounting for the discontinuous motion of visceral and parietal pleurae, we are able to show a significant increase of registration accuracy with respect to the target registration error (TRE).

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-642-04268-3_93DOI Listing

Publication Analysis

Top Keywords

motion field
12
motion
10
image registration
8
motion fields
8
registration
6
slipping objects
4
objects image
4
registration improved
4
improved motion
4
field
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!