Purpose: Supplemental oxygenation is essentially important in critically ill patients with potentially reversible pulmonary insufficiency. An extracorporeal membrane oxygenator and percutaneous cardiopulmonary support have been used for these patients. However, these techniques are associated with so many complications that an additional new therapeutic modality is required. The purpose is to investigate if the peritoneal cavity can be used as "extrapulmonary respiration" that is analogous to peritoneal dialysis and utilizes the efficacy of liposome-encapsulated hemoglobin (artificial oxygen carrier; TRM-645).

Methods: Rats weighing an average of 300 g (n = 18) received an incision in the right chest to generate pneumothorax, which resulted in severe and lethal hypoxia. Oxygenated TRM-645 and human red blood cells (MAP group) were administered into the peritoneum in the experimental rats' pneumothorax model. No treatment except the right pneumothorax was administered to the sham group.

Results: Survival times from the pneumothorax were significantly longer in the TRM-645 and MAP groups than in the sham group (32.0 +/- 6.9 and 22.0 +/- 4.9 min vs 9.2 +/- 1.9 min, P < 0.01). In addition, an arterial blood gas analysis showed that the oxygenation in levels significantly improved.

Conclusions: The abdomen (peritoneum) can potentially become an "artificial lung" that can be employed in critical care settings. TRM-645 provides an alternative to the use of washed human red blood cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00595-009-4104-8DOI Listing

Publication Analysis

Top Keywords

artificial oxygen
8
oxygen carrier
8
human red
8
red blood
8
blood cells
8
+/- min
8
efficacy peritoneal
4
peritoneal oxygenation
4
oxygenation novel
4
novel artificial
4

Similar Publications

Islet transplantation and more recently stem cell-derived islets were shown to successfully re-establish glycemic control in people with type 1 diabetes under immunosuppression. These results were achieved through intraportal infusion which leads to early graft losses and limits the capacity to contain and retrieve implanted cells in case of adverse events. Extra-hepatic sites and encapsulation devices have been developed to address these challenges and potentially create an immunoprotective or immune-privileged environment.

View Article and Find Full Text PDF

This research explored the impact of age-hardening treatment on the mechanical response and electrical resistivity of copper-clad AA6063 alloy bimetallic wire, with a focus on microstructural analysis and interface characterization. In this study, AA6063 alloy wire was inserted into an oxygen-free high conductivity copper tube, and a bimetallic wire was fabricated through a wire drawing process that reduced the cross-sectional area in 13 stages. The bimetallic wire underwent a series of thermo-mechanical treatments, including various combinations of wire drawing, solution heat treatment, and artificial aging.

View Article and Find Full Text PDF

Clinical Features of COVID-19 Associated Pulmonary Aspergillosis: A Multicenter, Retrospective Study.

Clin Respir J

January 2025

Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Objective: This study was conducted to further understand the clinical characteristics of COVID-19 associated pulmonary aspergillosis (CAPA).

Methods: In this study, we conducted a multicenter retrospective survey, which included patients with COVID-19 from five hospitals in Zhejiang, China. A total of 197 patients with COVID-19 were included in the study.

View Article and Find Full Text PDF

An involvement of a new zinc finger protein PbrZFP719 into pear self-incompatibility reaction.

Plant Cell Rep

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.

This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.

View Article and Find Full Text PDF

Photosynthetic bacteria (PSB) excel in wastewater treatment by removing pollutants and generating biomass but are challenging to optimize due to complex operational and environmental interactions. Neural Ordinary Differential Equations, Elastic Net, Stacking, and Categorical Boosting were applied as artificial intelligence methods to predict chemical oxygen demand (COD) removal efficiency, biomass productivity, biomass yield, and energy yield. Among these, the Stacking model demonstrated superior predictive performance across all targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!