Radiation dose reduction in CT coronary angiography.

Curr Cardiol Rep

Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.

Published: January 2010

During recent years, technologic advancements in computed tomography (CT) have allowed robust cardiac and coronary imaging. Small, mobile cardiac structures such as the coronary arteries can now be imaged directly and noninvasively with high precision. Given the fact that coronary CT angiography (CCTA) can detect preclinical calcified and noncalcified atherosclerosis, there is potential to revolutionize the management of ischemic heart disease by refining risk stratification and improving outcomes in various clinical settings. However, despite this progress, CT has come under scrutiny as concerns about the level and risk of the radiation exposure of the population grow. Although there are no data to support a direct association between CT imaging and risk of future cancer, health care practitioners should make every effort to minimize radiation exposure to their patients. The purpose of this article is to describe techniques that can reduce radiation dose to patients during CCTA but maintain diagnostic image quality.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11886-009-0074-0DOI Listing

Publication Analysis

Top Keywords

radiation dose
8
coronary angiography
8
radiation exposure
8
radiation
4
dose reduction
4
coronary
4
reduction coronary
4
angiography years
4
years technologic
4
technologic advancements
4

Similar Publications

Purpose: Immune checkpoint blockades (ICBs) are promising, however they do not fit all types of tumor, such as those lack of tumor antigens. Induction of potent anti-tumor T cell immunity is critical for cancer therapy. In this study, we investigated the efficacy of immunotherapy via the immunogenic cell death (ICD) dying tumor cells in mouse models of lung metastasis and tumorigenesis.

View Article and Find Full Text PDF

A systematic review of the effectiveness of leaded glasses for ensuring safety among healthcare professionals in fluoroscopy.

J Med Imaging Radiat Sci

January 2025

Instituto Politécnico de Coimbra, ESTESC - Coimbra Health School, Medical Imaging and Radiotherapy, Rua 5 de Outubro, S. Martinho do Bispo, Coimbra 3046-854, Portugal. Electronic address:

Background: Currently, there is an increase in procedures across various clinical specialties involving the use of ionising radiation.

Objective: The primary objective of this systematic review is to analyse and compare the existing literature regarding the effectiveness of leaded glasses for healthcare professionals.

Methods: Comprehensive literature searches were conducted for relevant studies published between 2018 and 2023 using the Scopus, PubMed, and Web of Science databases according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology.

View Article and Find Full Text PDF

Purpose: To train and validate KB prediction models by merging a large multi-institutional cohort of whole breast irradiation (WBI) plans using tangential fields.

Methods: Ten institutions (INST1-INST10, 1481 patients) developed their KB-institutional models for left/right WBI (ten models for right and eight models for left). The transferability of models among centers was assessed based on the overlap of the geometric Principal Component (PC1) of each model when applied to other institutions and/or on the presence of significantly different optimization policies.

View Article and Find Full Text PDF

Multi-layer shielding optimization of a high activity Am-Be mixed field irradiation facility.

Appl Radiat Isot

January 2025

Experimental Nuclear Physics Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Egypt; Cyclotron Facility, Egyptian Atomic Energy Authority, Egypt.

Neutron and gamma-ray shielding design for a 30Ci (1.11TBq) Am-Be irradiation facility is studied using MCNP5 Monte Carlo simulation code. The study focuses on the optimization of the shielding layers of the previously planned neutron irradiation facility.

View Article and Find Full Text PDF

Objective: The study aims to systematically characterize the effect of CT parameter variations on images and lung radiomic and deep features, and to evaluate the ability of different image harmonization methods to mitigate the observed variations.

Approach: A retrospective in-house sinogram dataset of 100 low-dose chest CT scans was reconstructed by varying radiation dose (100%, 25%, 10%) and reconstruction kernels (smooth, medium, sharp). A set of image processing, convolutional neural network (CNNs), and generative adversarial network-based (GANs) methods were trained to harmonize all image conditions to a reference condition (100% dose, medium kernel).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!